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Abstract -~ In this paper. the static microstructural effects ol periodic elastic composites were studied
by the homogenization method. This approach is based on the analysis of the momentum balance
equations which appear at higher orders. The physical meaning of the corrective terms due to the
existence of heterogeneities is discussed in detail. We show that the higher terms introduce the
successive gradients of macroscopic strain and tensors characteristic of the microstructure, which
result in non-local effects. The boundary conditions for solving problems up to third-order are also
given. This analysis is used to define a kinematic criterion for the occurrence of these microstructural
effects. and a procedure to assess them. The obtained macroscopic description constitutes a gen-
eralization of the second gradient theory, but it is not in agreement with the mechanics of Cosserat
media. Moreover. these results can be used to approach the emergence of localization phenomenon.
Finally, an application of the method is given using periodically stratified composites as an example.

1. INTRODUCTION

The materials used in civil engineering (concrete. rocks. steel, etc.) or in industry (com-
posites, metals. etc.) often present a structure in which different components are assembled,
therefore leading to a heterogeneous material. However the design rules of the buildings
made with these materials are essentially issued from the mechanics of continuous media
applied to homogeneous media. The good mechanical behavior of many constructions built
according to these principles proves that this method has stood the test of time. This simple
remark led us to think that. under certain conditions. these heterogeneous materials can be
regarded as homogeneous continuous media.

The homogenization method of periodic media developed by Sanchez-Palencia (1980),
proves that a heterogeneous medium can behave as a homogeneous material in compliance
with the equations of continuous media, provided that macroscopic size, L, is infinitely
large in comparison with size / of its heterogeneities (¢ = / L. — 0). However, in reality, this
limit is never reached because the microstructure size does not equal zero (/ # 0) and the
macroscopic size characteristic of the load applied to the material does not give an infinite
value (L. # oc). For these reasons, it has become interesting to investigate how the descrip-
tion of the medium deviates from the homogenized behavior which complies with standard
continuum mechanics.

This study deals with macroscopic phenomena whose characteristic size L is large, but
not very large, with respect to size /. Under static loading, these phenomena can be observed
in samples constituted of few heterogeneities, in cases of stress concentration, for example
at the vicinity of a load or near an angular boundary, and also during the formation of a
shear band (Fig. 1). In dynamics. this situation corresponds to wavelengths which are about
10-100 times greater than heterogeneities.

In this article, we will consider elastic periodic composites submitted to static loadings.
Although the elastic behavior is very simple, this example is instructive since it allows one
to clearly understand the influence of the microstructure on overall behavior in determining
under which conditions this influence is negligible. and. on the other hand, when there is
an influence. to show how it modifies the response of the material,

The homogenization method which, according to its principles, takes into account the
existence of a microstructure. is particularly well adapted for this type of analysis. This
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Fig. 1. Cases where the macroscopie size 1 1s large but not very large in comparison with /.

technique of asymptotic expansion allows description improvement by exploiting the terms
of higher orders and considering their role in macroscopic behavior. Such an approach,
which, contrary to the common process. is not limited to the first significant terms, has
already been proposed by Gambin and Kréner (1989) and Boutin (1993) in statics, and
also developed in dynamics by Boutin (1991) and Boutin and Auriault (1993).

In the second part of this article we recall the basic principles of the homogenization
method. Then, the equations governing the macroscopic static behavior of an elastic
composite are presented. up to third-order. In the third chapter, the results obtained are
discussed. and their interest in the study of microstructural effects is presented. Then, a
comparison of the homogenization method with two other microstructural approaches—
second gradient and Cosserat media theories——is given, and the application of the method
to the study of the emergence of locualization is discussed. Finally, in the fourth section this
approach is applied to periodic stratified composites.

2 HOMOGENIZATION OF FLASTIC COMPOSITES (TO THE THIRD ORDER)

Before going further into the details of the method, let us first present some general
considerations about homogenization.

The aim of any homogenization method is to give a description of a phenomenon in a
heterogeneous material. where the local fluctuations due to the heterogeneities do not
appear explicitly. Obviously the possibility of such a description depends on the studied
case. In which condition is it. then, relevant to employ a homogenized description?

First of all, there is no way o obtain such a description if the studied phenomenon
essentially varies at the level of the heterogeneities. For this reason, a basic reason to have
a homogenized description 1s that the phenomenon actually presents a characteristic size
of evolution, L. much larger than that of the heterogeneities. This means that one variable
(at least) related to the phenomenon varies according to a macroscopic length L. Thus, the
research of a homogenized behavior makes sense only if the following two conditions of
scale separation are fulfilled. The first concerns the material, which must be sufficiently
regular so that one can define a characteristic microscopic size /. The second is related to
the phenomenon for which the characteristic size of its variations must be large in com-
parison with /. From these conditions it results that “some invariance property” has to be
fulfilled at the local scale by hoth material and phenomenon.

For the material, the simultaneous existence of a characteristic size and a local invari-
ance, means that it is possible to define a representative elementary volume. Practically, it is
difficult to propose a rigorous definition of such a volume, likewise the definition of the
particle in continuum mechanics is not strict. In fact there is some similarity between these
two notions since both have to be -

e not too small
to obey the continuity assumption (continuum mechanics)
to be representative (homogenization):
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e not too large
to be considered as infinitesimal (continuum mechanics)
to respect the scale separation (homogenization).

However there is a kind of material, namely periodic material, for which this difficulty
disappears since the period defines the representative elementary volume without any
ambiguity. In this case the “invariance property” is expressed by the periodicity of variables.

In the same way, there is no strict definition of macroscopic length. Often this size is
estimated from the typical size of the overall volume studied, or by the size of the tested
sample. However, with respect to the problem in consideration. L can also be determined
by the boundary conditions or by a size related to the physics of the phenomenon (like
wavelength, thickness of diffusion layer,...). As a matter of fact, a first assessment of L
can be deduced from the dimensional analysis.

The conditions of ““homogenizability™ necessarily induce some specificities for homo-
genizable situations.

A priori. the behavior of a heterogeneous material depends on the whole of the
heterogeneities. However the existence of an elementary representative volume allows, by
definition, one to extrapolate the properties of this volume to those of the material. More-
over, since a characteristic variable of the phenomenon varies at the macroscopic scale, the
gradients of this quantity Q are constants close to zero at the level of the representative
volume. So, under homogenizable situations, the solicitation applied to the representative
volume is not arbitrary. Consequently, it is not necessary to know all the properties of
the representative volume. but only those related to forced homogeneous solicitations in
gradients of Q.

In other words, some of the properties of the representative volume do not intervene,
and therefore cannot be put into evidence, under homogenizable situations. This remark
allows us to understand more clearly why the response of a material can be significantly
different in homogenizable and non-homogenizable situations.

Finally we note that a leading hypothesis is the local incariance. In fact the periodicity
is only a simple and efficient way to express this assumption. For this reason, when
considering the same physics at microscopic level, the macroscopic description will be of
the same kind whether the microstructure is periodic or not. As already underlined by
Auriault (1991) the structure of the equations will be the same, but will have different
coefficients. This point. which has been experimentally confirmed for numerous phenomena
(Darcy’s law, suspension’s viscosities. thermal and ¢lastic coefficients, etc.) allows, in some
extent, the use of the periodicity assumption in order to analyze real materials.

It is important to note that these considerations are only valid for homogenizable
situations. Obviously, when there is no scale separation, the phenomenon is essentially
determined by the local organization. so that descriptions for periodic or disordered media
are structurally different. Experiments such as high frequency wave diffraction are also in
agreement with this intuitive idea.

2.1. Principles of the homogenization method

In this chapter we will describe the main principles of this method which is now
commonly used to solve multiple scale problems. Basically, it is an asymptotic method with
double variables, initially developed by Benssoussan er al. (1978) and Sanchez-Palencia
(1980).

The microscopic scale, described by variable y, is determined by the microstructure,
having / as a characteristic length. Variable x is associated with the macroscopic scale, the
characteristic length. L, of which being determined by the loading or the boundary con-

ditions applied to the material. The small parameter ¢ is defined by the ratio of the two
scales:

The use of the two variables v and 1 leads us to transform the common spatial
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derivatives into ¢, +¢7' ¢ and to put the variables in the form of asymptotic expansions in
power of ¢. For example, for the displacements:

u(x.v) = Nouw(v.ry with: O@w) =u'.

Moreover, the periodicity of the microstructure induces the same periodicity of the
functions «' according to variable . The homogenization process consists of, expressing in
the form of expansions the equations governing the physics at local scale, identifying the
terms with the same power of ¢, and finally. solving the problems obtained in series.

In principle, this method of asymptotic expansions is all the more reliable as ¢ is small
in comparison with /. that is. when the separation of scales is clear. In this case, the
description obtained at the first significant order corresponds to the macroscopic behavior
of the material. to an accuracy of ©. Note that for a given medium, length / is fixed, and
consequently. the real behavior is all the better described by the homogenized behavior the
larger L is in comparison with /

2.2. Homogenization applied to elastic composires

A number of studies, such as Sanchez- Palencia (1980) and Auriault and Bonnet (1985)
address homogenization of elastic composites under static or dynamic loadings, according
to period geometry, the contrasts of the mechanical properties of the period components
etc. In these works, the macroscopic description is given by the first significant order
obtained in the homogenization process. The determination of higher orders was initiated
for the elastostatics of composites by Gambin and Kroner (1989) who gave their expressions
without analysis of the physical insight. Following this work the developments at higher
orders were derived and their physicial meanings analyzed, for dynamic cases Boutin (1991)
and Boutin and Auriault (1993) for static cases, Boutin (1993), and for thermal conduction,
Boutin (1995).

2.2.1. The set of problems to be solved. We consider a finely heterogeneous material for
which the elastic tensor varies locally according to a period Q (Fig. 2). Under static
conditions, a field of volume forces of the type p(v)/"(x) [where p(y) is the density of the
cell components) is applied to the material. The problem is governed by the following
equations:

Vioa+pl =0 6=c..e(u)),

where u is the displacement field. o the stress tensor. e(u) the small strain tensor and ¢ the
elasticity tensor. The dot means contraction (.. double contraction, etc.) and V is the Nabla

Fig. 2. Microheterogeneous media with different kind of local structure (crystalline. fissured. porous,
composite).
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operator. If the variations of ¢ are not continuous. these equations have to be taken in the
sense of the distributions. and u and ¢ .7 must be continuous through the discontinuity
surfaces (having n as normal).

The existence of two well distinct scales is expressed by using the system of double
variables x and ». Then the stress tensor takes the following form:

o=c.. [e(u)+e e (u)].

where e, and e, are the strain tensors calculated according to the variables y and x,
respectively. The momentum balance is thus written :

& 'V,.e+V, .a+pt" =0
Using the displacement fields only. the initial problem is thus transformed as follows :

£ L w+e L T+ L+ pft = 0.
where
L “(u)=V, .[c..e ()]
L 'un=V, . [c..e)]+V .[c..e(u)]
L) =V, . Je..e(u)).

When introducing into these differential equations asymptotic expansions, the fol-
lowing problems are to be solved in series:

-

L")y =0 ie.: V..o '1=0 (1a)
Ly =L ') Vo)==V, .lo] (1b)
L@y =—~L " )y—L"w"y=pf" V. [o']= =V, [6"1—pf° (lc)
Lw'y=—L "(w)—L"(u") Vo fo']=-V..[¢"] (1d)
L uly=~L "(u')— L") V [¢']= -V, .[¢"] (le)

2.2.2. Solution. Only general ideas are given below. The detailed solutions of the
problems for successive orders. close to that proposed by Gambin and Kréner (1989) and
Boutin and Auriault (1993). bur with different rolume forces, are given in Appendix A. All
the problems to be solved successively address the search for Q-periodic displacements
fields v, such as:

Vo= -V, . [¢]-F with ¢ =c..[e()+E] )

where the volume force distributions are known (#" = pf" and F' = 0 for i > 0) and tensors
¢’ and E' have already been determined by the previous problems.

Because of the periodicity of ¢/~ '. a first condition (said “of compatibility””) can be
obtained directly by integrating eqn (2) over the period

~ n

Voo dr=]| [0 nds=0= - | (V. [¢]+F)de

V&2 Yo Ja

LAY
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V.. KaeD)+F =0 with > =1Q " | .dre

JQ

These are fundamental equations. since they involve only the macroscopic variable x,
and express the balance of the forces of order ¢ acting on the cell. This compatibility
condition being established. the determination of Q-periodic field r(x, v) is done by using
the variational formulation of the problem. To avoid indetermination due to fields of rigid
translation }/(x). we then look for the solution in the vectorial space W defined by :

W= wow Q-pertodic, (w) = 0].

Taking the scalar product of eqn (2) by any test field w and integrating over Q, we get:

a -~ n

V.. [e ] wdr ' o e onyde+ | [0 '] nowds

SO Ju

Yin

= ' (V. [o]+F) . wdr.

The boundary term being zero by periodicity. we obtain after introducing the com-
patibility equation :

n

Ve W c..e (). e (m)de - ' V.. |6y —a] . wdr+ | ¢..E .. e(w)dp,

SO0 Jo JO

¢ satisfies an ellipticity condition since 1t is an clastic tensor. Therefore the Lax-Milgram
lemma ensures the existence and uniqueness of a field ¢, of W. solution which linearly
depends on the forcing terms. The general solution is obtained by adding to v, any rigid
translation F(x).

2.2.3. Resulrs. The main results of Appendix A are the following.

Displacements. The displacement fields can be expressed in the form :
ulx.v) = U
—olC AV +X(v) ettt ]
+o (U )+ X0 e U+ Yy Ve (U]
XL e (U Y)Y e (U Z() ..V Ve (U]

Tensors X. Y. Z of rank 3.4 and 5. respectively. are obtained from particular solutions v,..
Those latter having a zero average. the mean displacement (/(x) is given by :

)y = Uy = CN o+ e o+ UC o)+ U (o +

Strains. We denote by "V and "V, the symmetrized gradients calculated according to
x and 1. The field of strain is in the form:
e .. =e () +—V X1 e (")
vere (U )=V [X(1r) el 1=V [X(»)..e (U)]+V,[Y()...V.e (U]}
Fele U+ VXY e (0] YV [XG) e (U] V [Y(1) ... Ve (U]
VY Ve (U~ V [Zir) ... VVe (UND]+ -



Microstructural effects in elastic composites 1029

As tensors X, Y. Z are periodic with a zero mean value, we obtain by averaging:
e,y =e(U)y~e (cU)+e (e U e (e U)+ - =e (V).

This means that the mean strain is the strain of the mean displacement.
Stresses. The tensor of local stresses is directly calculated from ¢(y) and e(x, y):

a(x.v) =c(1r)..e(x. V).

The averaged values of these stresses allow us to define tensors C°, &C', &°C*, which
characterize the macroscopic behavior:

(a(x.y)> =C" e (L")
+C" . e (el +eCh. . Ve (L)
+C" e (s +eC L Ve (eU )y +6°C LV V. e (U%).

where, using formal writing.

C'=:Q ' ’ (¢+c..°V (X))dr: 4dthrank tensor (3a)
w2

C'=1Ql "' ' (¢.X+¢.. 'V (Y))dr. Sthranktensor (3b)
JQ

C =0 ! ‘ (c.Y+c.."V,(Z))dr: 6thrank tensor. (3c)

The expressions of C' and C- given by eqns (3b. 3¢} show that:
C' =0(l,) and C° = O(cl}).

where 1,, is the dimension of the penod expressed according to the system of dilated variables
v. Consequently :

sC'=Otely and ¢ C = O(el).

where /is the dimension of the cell expressed in the svsient of reference variables x. Therefore,
in macroscopic equations. we necessarily have to use the effective tensors C' = ¢C' and
C" = &°C*, which can be directly calculated from known geometry and mechanical charac-
teristics of period components, independently of €.

It should be noted that the closer the period comes being homogeneous, the more the
values of C” and C” are small. Finally, note that tensor C” is of odd rank and therefore
anisotropic. It results that if the material is macroscopically isotropic (up to the second
order), C' = 0.

Momentum balance. At the three first significant orders. the macroscopic momentum
balances are given by :

Vo 6]+ =0 <a">=C"..e(U") (4a)

V.. [e<a'y] =0 <ea'y =C". e (el )+eC' .. V.e (U (4b)
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V. . [£¢a*)] =0 &> =C". e (&’U")+eC' . Ve (eU')+6C?.... V. V.e(U").
(4c)

The variables used in the macroscopic description are the volume averages of variables
defined at the microscopic scale. Their physical meaning should thus be specified.

2.2.4. Phvsical meaning of macroscopic displacements and strains. The macroscopic
displacements of any order U'(x) are volume averages of local fields #/(x, y). These dis-
placements U'(x) can therefore be interpreted as the translation of geometric center G of
the cell (OG = |Q| '[OM .dv). It should be noted that the whole period is translated
without local rotation.

There i1s no difficulty in interpreting macroscopic strains of order /, since they cor-
respond to strains associated with macroscopic displacements of the same order /.

2.2.5. Physical meaning of averaged stresses. The homogenization introduces volume
averages of local stresses at order /. Do the quantities thus defined correspond to the usual
physical definition of stresses which are fluxes of forces obtained through surface averaging
of elementary forces?

In order to examine this point. we transform volume integrals into surface integrals,
using the identity

) OV, =0 )0 4 ay,

l.e. by integrating over a volume }"and using the divergence theorem,

r~ r

[ 6, v, .ndy= -1 (V. .[e]) . dz*+J
i

W

g, de. %)

vl b

Stress of zero order. Stress ' is ol zero divergence (according to y), and therefore when
applying eqn (5) to the cell Q (Fig. 3). we get:

oy =1Q '| &) . v.nds (6)

Joo

Considering the periodicity of ¢". only the integrals on the boundaries S_, and S_, (wWhere
normal # = +e,) are not equal to zero. the other ones equating to zero two by two:

/
Q
+ €k

S-k L

-

/ S+k

- ek L~

Fig. 3. Period Q and surfaces S.,.
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~

{ayy = Q] ! ol v, 0, dy—|Q] '( gy .y -0, ds

Jso VS

I, being the period length in e, direction. we have |Q| =/, - S_,. Using the periodicity of a°
we finally get:

~ ~

o ds =S, | 'J o) ds.

S

I
°

(o}

JY

Thus, the volume average {6}, > is actually the surface average of elementary forces
directed according to e; acting on the face having e, as normal.

This result can be generalized to stresses applied to any oriented surface
[S]-m = A A B, where vectors A and B are linear combinations—with integer coefficients—
of the vectors defining the elementary cell. Let us prove that the vector T obtained by
surface averaging of elementary forces acting on S

~

Tm) =[S ' | ¢".mdS isequalto <{¢").m.
Js

In this aim. we consider the cell Q' (Fig. 4). defined by (A, B, m/’), the distance /’ between
the two the faces of normal +m being such that: /' = |Q’|;S = /(e,- m) (no summation over
J). When applying eqn (5) to Q" and taking the scalar product by m, one obtains:

~ »

¢’ . mdr = ‘ (6" .m)(y.m)ds.
Ja Joa

From the definition of Q'. 6° is also Q' periodic (see Fig. 4). and we have:

» "
! {

(o8 *J a"ds=1(Q] ' | ¢"ds = <"
Q

Jo

hence

~

6"y m= Q| i (6" .n)(y.m)ds.
Q

v

As previously stated. due to the periodicity, only the terms associated with the surfaces

Fig. 4. Volume Q" and surface S (representation in the two-dimensional case).
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having +m as normal. stay present in the boundary integral. Sincc the distance between
these faces is /" we get :

-

6" > m=("1 18| ¢".mds = T(m).
5

v

This equality is valid for any discrete orientations m (such that m = A A B). As at the
macroscopic level an elementary surface includes numerous cells, one can always assimilate
the macroscopic orientation to one of the discrete orientations. Therefore
(6" = C". . e (U") actually defines a macroscopic Cauchy stress tensor. In the same way all
the terms C’..e (U") are also Cauchy stress tensors. We note that local stresses are sym-
metric and therefore these macroscopic tensors are also symmetric.

Stresses at higher orders. On the contrary to ¢, the stresses at order p (p > 0) satisfy
an equation of the form:

V.. |e"] = s,

where s” 1s a periodic term different from zero. having a zero mean value in y. Following
the same reasoning as above. we have

(6" . m=|S ' ' 6" mds+ Q| ‘J s"(y.m)de. (7
Jo :

Q
Equation (7) leads us to make two remarks concerning the surface average of ¢”:

(a) Force vector T” (m) by unit surface acting on face S,

»

T"(m) = 5| g’ .mds

Y

is hot a mucroscopic quantiry. As a matter of fact. we have

T’(m) = {¢">5m—|Q’| '

Y

s”(y.m)dc
Q

and as s” (y.m) is not a periodic term, the value of T”(m) depends on the choice of the
period used for the calculation (i.e. on the variable y). That means that the surface average
of 67 varies at the microscopic scale.

(b) Moreover the surfuce average of elementary forces due to 67 do not define a tensor
in the frame associated with the normals of the faces S, we consider the components Z,.
(no symmetry) defined from the surface averaging of the ith component of the force due to
6" acting on face S, :

~

T, =T'e) = |S, 'J o ds.
Sk

These components define a tensor £. Now, from eqn (7) applied to Q,, and Q, it is easy
to see that the components of T”(m) are given by :

T/ =ZX,m, +~ Qi ‘j | .\'{’(y4m)d1'~J S,”(y.m)dz}
(93 (o3

vl

hence
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T # X, m, =T e,). m,.

This inequality proves that the operator connecting m to T”(m) is not linear, and
consequently. the surface average of stresses a® does not define a tensor. On the contrary,
volume averages do define a tensor. But these can not be interpreted in terms of common
Cauchy stress. We will see in the next section what is the meaning of the macroscopic
equations which involve {6/ > tensors.

3 ANALYSIS OF THE DESCRIPTION INCLUDING HIGHER ORDER TERMS

Gambin and Kroner (1989) considered the influence of the higher order terms in terms
of macroscopic “behavior™ law. It was shown that the relation which links the averaged
stresses and strains include weak non-local effects- ~associated with the successive gradients
of the strain tensor. However. stricio sensu. this relation is not a behavior law, since averaged
stresses {¢”) (p > 0) are not Cauchy stresses.

Here, taking into account this difficulty of interpretation. we study the role of the
higher order terms from macroscopic balance equations.

3.1 Interpretation of bulance equations

3.1.1. Macroscopic elastostatics. The balance cquation {4a) at zero order, corresponds
exactly to the common elastostatic tormulation. Field " which results from the distribution
{p> f*.is what would appear in a continuum elastic medium characterized by elastic tensor
C°. However, this description is only valid to an accuracy of «.

3.1.2. Force distributions due to microstructure. Let us now examine eqns. (4b, ¢) of
order 1 and 2. As tensor (¢ (p > 0) is not a stress tensor, these equations cannot be
interpreted directly in this form. Considering that the terms C”. . e, (U”) in {6”) are actually
stress tensors, we can give a physical meaning if we rewrite eqn (4) in the following forms:

Vo C el = pot" (8a)
Vo [C . e (:U)) = -V, .[C...Ve ("] (8b)
Vo C" . e (U= -V [C.. Vel -V [C'...VVe (U"]. (8¢

Equations (8b. ¢) arc clastostatic equations applied to fields «U' and £° U7, respectively,
where source terms resulting from displacements fields at lower orders appear. These terms
are similar to diffracted sources 1 the dynamic case (Boutin and Auriault. (1993)). These
force distributions arise from the fact that the equations which express the momentum
balance of the cell at order &' do not take into account contributions of order ¢*'. So, these
latter become forcing terms in the balance equation at order &', Consequently, in order
to balance these sources. a displacement field "'~ occurs. satisfving the elastostatic equa-
tions of the homogeneous equivalent medium.

Unlike what would happen in a perfect homogeneous material (for which C' = 0), the
presence of a microstructure results in a distribution of forces which generates a series of
displacement fields of a lower and lower amplitude: fields of order strictly inferior to i
generate sources at order 7 which themselves generates a field of order i, and so on.

The source terms are connected with the successive gradients of the strain tensor, and
therefore, they introduce a non-local effect in the material behavior. Itis clear that the more
the deformation comes to being homogeneous. the weaker the sources will be. Conversely,
when strain gradients are signiticant. the corrective terms become significant, so they
amplify the non-local effects and modify the solution U of the equivalent homogeneous
medium.

The sharper the heterogencities are at the microscopic scale then the larger are the
values of C" and C” and the more the non-local terms become significant (for the same
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inhomogeneity level of the macroscopic deformation). Finally, note that if the material
presents an isotropic macroscopic behavior (up to the second order), then C' = 0 and the
first significant source term appears at the order ¢*. Consequently the non-local effects
would generally be more important in anisotropic materials than in isotropic materials.

3.2. Solving boundary condition problenis

For a material of known microstructure. tensors C”, C’, C” can be calculated. But limit
conditions to be applied to the U'(x) fields should be known in order to determine the
macroscopic solution, up to third-order. for given boundary condition problem.

3.2.1. Macroscopic solution (withour edge effects). On the macroscopic scale, let us
consider a body B—the boundary of which being dB—submitted to the macroscopic force
density (p>f(x) and to the following conditions on the border:

e on the portion dB; of 0B, imposed stress vector S(x) ;

e on the portion dBy, = ¢B - ¢B,. imposed displacement vector D(x).

At zero order, the field U°(x) is determined by the elastostatic eqn (8a) and the following
boundary conditions:

C'. e (U"(x)). N =S(x) on{Bg(having Nasnormal)
U%(x) = D(x) on¢By. (9a)

The calculation of the field L' (v} is performed by solving another elastostatic problem
governed by eqn (8b) where the microstructural forces are directly deduced from the
knowledge of U"(x). The boundary conditions applied to ¢U'(x) must be such that the
global field U°(x)+¢U'(x) meets macroscopic conditions imposed on éB, i.e.

C' e (L") +:U(X). ¥ =8(x) onéB;

U(x) 46U 1a) = D(y) on By,

Taking into account equation (Yu). L' (x) follows a Neumann condition on ¢Bg, and
a Dirichlet condition on éBy,:

C'" el 1x).N=0 oncBg
U (v) =0 on ¢Bp. (9b)

In the same way, the macroscopic field &£ (x) is totally determined by the elastostatic
equation (8c¢). where the microstructural forces are calculated from the fields U°(x) and
¢U'(x) already obtained and boundary conditions of zero stresses and displacements,
respectively, on ¢Bg and ¢By, [i.e. conditions (9b) where £’ U?(x) substitutes ¢U'(x)].

By this reasoning at the macroscopic scale. we obtain the macroscopic displacement,
which appears within body B, up to third-order. However, this solution does not take into
account the edge effects existing on a thin laver in the proximity of ¢B.

3.2.2. Remarks on edge effects. It is known that real boundary conditions are only
satisfied on average (on a period) by the homogenized description (see for example Sanchez-
Palencia, 1985). For this reason, boundary layers have to be introduced in order to match
real and homogenized conditions. The analysis of these layers, up to third-order, requires
specific developments and will not be addressed in this paper. However, the following
remarks can be made:

{(a) Matching boundary conditions up to third-order requires the introduction of
boundary layers at each order.
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(b) For homogenized problems at zero order, the boundary layer concerns the stresses
on ¢Bs. It generates corrective displacement of the first order which is defined up to a
macroscopic term. This latter will be determined by a continuity condition between the
displacements given, on one side by the solution on ¢Bg of the macroscopic problem at first
order, and, on the other side, by the inner limit of the corrective term.

(c) For homogenized problems at higher orders. other boundary layers will expand
near B for matching stresses conditions. Moreover, as the displacement fields vary on the
local scale (contrary to u"), another type of boundary layer has to be developed on ¢Bp, to
match the homogenized and the real imposed displacements (it is clear that for these new
boundary layers there is no displacement indetermination).

As a conclusion, let us note that the boundary layers describing edge effects modify
the fields at the very vicinity of the boundaries, since the limit layers have a “thickness’ of
about one period, Dumontet (1986). Therefore the macroscopic solution obtained by the
procedure given in Section 3.1.3 will be valid for the body B. except for these limit zones.

3.3. The measurement of ¢ to quantify non local effects

Until now, we spoke about the macroscopic size L and ¢ = //L without giving an
accurate definition. But this is a key point in assessing the role of the microstructure in the
overall material response. We propose here two approximated methods aimed at assessing
L and e.

3.3.1. Rough evaluation of ¢. The more simple approach, Boutin and Auriault (1991),
consists of observing that the homogenization process leads to displacement fields of the
type:

UO(x)+eu' (x.0)+ -+ with u' = OU").

If we consider the increase of {'{ in the direction x, over a given period, we necessarily
must have:

UV (v + 1) = US(x )| < Ote (U (x ).
At a macroscopic scale, / is very small and we can write :
L AUy iex /U] € Oge).
which gives a lower boundary of ¢ But, as ¢ is the measurement of the macroscopic

description accuracy, the optimum value corresponds to the smallest allowable value, that
is:

Oe) = [C(UTy ey (U oralso: L = O([UY| .| &(UY) /x|~ Y).
This latter expression of L is what would be obtained by the dimensional analysis of

the phenomena at the macroscopic scale. In the general case for a three-dimensional field,
we get:

L=0min{{U7].|e(U)) x| ') 10)
and :
&= O(max [(|U") ¢ ").0x )|, (11)

An order of magnitude of ¢ is thus locally given by the relative variation of the
displacement on the cell.
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For a given boundary condition problem. we can solve the elastostatic equations, and
calculate the field . Then, using eqns (10) and (11). we, respectively. obtain the order of
magnitude of the macroscopic size L and of ¢ in any point of the material.

3.3.2. Accurate assessment of .. The second method used to assess ¢ is more precise but
needs two integrations. From field {'" previously calculated and the knowledge of C” (or
C” if C" = 0), we can determine by a second integration the field «L'(x) (or &*U7(x)). By
comparison with L' we deduce a theoretical local assessment of ¢

N

c=OeU Iy o e =0 6707

1. (12)

3.3.3. A kinematic criterion for non local effects. Assessed values (11). (12) of & could
be used as a criterion of occurrence of microstructural effects (except on borders). For a
given boundary problem, the drawing of isovalues could allow defining ditferent zones for
the response of the matenial :

(a) at very low values of ¢ (< 10 ). the macroscopic behavior corresponds to that of
the equivalent homogeneous material

(b) the areas with large gradients. where ¢ x (.1. corresponds to the domains where
the role of the microstructure is significant and for which it is necessary to introduce
corrective fields (' (or & U7y :

(¢) ifregions with e > 1 arc observed. the homogenization approach is no longer valid,
and 1n this domain. the physics ot the phenomenon have to be treated at the microscopic
scale.

3.4, Nonlocal tevmy for different loadings

These results have been obtained assuming that the medium was submitted to volume
forces of type p(1)/"(x), i.e. forces which vary at local scale. The developed formalism can
also be applied to problems where volume forces are different—for example zero-—on the
cell. However, the equilibrium of the period is modified by this new force distribution, and
consequently. the expressions of tensors C and C” are different. even though C" remains
the same (see Appendix A).

Thus. it appears that if the zero order description can be considered very clearly as
one of a continuous homogeneous medium. it is not the case for the macroscopic descrip-
tions which include the higher order terms. As a matter of fact, the effective tensors are not
strictly material tensors since they depend on the volume forces applied to the medium.
Moreover. the srructure of the equations depends on the kind of load. as it can be seen
when comparing static and dynamic descriptions (see Boutin and Auriault. 1993).

However. it should be noted that. for a giren distribution of volume forces. the tensors
remain the same whatever the boundary conditions. since these latter do not change the
cell equilibrium. From this point ot view. the effective tensors can be considered as quasi-
material tensors.

3.5, Comparison with other microsiructural approaches

In this section, an attempt was made to compare the homogenization approach with
two other theories. which deviate from the usual frame of continuum mechanics, by
imtroducing a characteristic length of the microstructure. In order to study the localization
phenomena. the double gradient theory was used, for example. by Lusry and Belytschko
(1988). De Borst and Miithaus (1991). and the Cosserat mechanics theory by Besdo (1985)
and Miilhaus and Vardoulakis (1986).

5

3500 Comparison with the second gradieni approach. Through the addition of the
balance equations at the three first-orders. we can obtain a single equation. valid up to an
accuracy of &', which includes the global macroscopic displacement field.
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Vo [C" e (L)) + pof' = =V, . [C .. Vel )=V [C" .. . VVe(U)

- . : . s
In the more general case. where € # 0. we get the following equation to ¢, when
considering only the first corrective term:

Vo C . e (U 4+7p5" = -V [C Ve ()] (13)

Note that in egn (13). two operators are applied to (. one of them elliptic of the
second order. the other one hyperbolic of the third order. This point seems to pose a problem
of solution stability. Actually this difficulty is artificially introduced when regrouping into
one equation the two equations at zero and first orders. If we respect the non-coupling of
the orders given by homogenization. it is clear that cach field {”is determined by the elliptic
operator of elasticity without any problem of stability.

For the cases where C” = (0. which correspond for example to a macroscopic isotropic
material. we get the following equation to "

VO CT e )] <t = -V OV Ve )] (14)

This constitutive law eqn (14) 1s similar to that proposed in the second gradient
approach. and leads us to make the following comments:

(@) On the basis of the homogenization approach assumptions, the existence of non-
local terms linked to the successive gradients of the strain tensor. without any postulate,
has been rigorously established. In contrast to the usual one-dimensional analysis, we
present a tensorial description dealing with three-dimensional problems. An advantage of
this method is that it shows that the first significant non-local term is generally not associated
with the second gradient. but to the single gradieni. which introduces an anisorropic effect
{eqn (13)]. This fact is not highlighted by one-dimensional analysis. The non-local terms
only need the second gradient of the strain tensor [egn (14)]. in particular cases, as for
example macroscopic 1sotropy (up to second order) or stratified composites (see Section
4). They may be isotropic or anisotropic according to the nature of tensor C”.

{b) Moreaver. these results enable a good understanding of the physics of the cor-
rective terms originating from the microstructure. It is interesting to note that non-local
effects do not result from a correction of macroscopic strain tensor by its second gradient.
as proposed by Lasry and Belvtschko (1988). In the same way. non-local phenomena cause
a distribution of volume forces. and not a modification of the stress-strain relation (since
for p > 0. tensors </ are not stress tensors and the surface average of 67 does not define
4 tensor).

(¢) Another advantage o homogenization is the clear definition of its validity domain :
the obtained description- -like that obtained trom the second gradient method—is correct
only it there remains a clear scale separation. Thus. any phenomenon for which the physics
at the local scale 15 determinant. cannot be described by this kind of approach. From a
numerical point of view. the results of the homogenization process present the interest
of uncoupled equations at the different orders ol magnitude. Thus, when C' = 0. the
determination ol the global displacement field requires an integration of two differential
second order problems. while the second gradient approach necessitates the resolution of a
much more complex differenuial Tourth order problem.

3520 Comparison with Cosserat media. Here the question becomes : do the higher
terms change the clastic macroscopic behavior. into a behavior of a Cosserat medium? Let
us recall that for those media. the stress state i~ described by a non-symmetric Cauchy
(ensor and the particulate kinetics include both translations and rotations.

Higher terms and Cosserat siedia. The homogenization development shows that higher
order expressions introduce corrective translation terms into the kinematic of the cell.
without anyv rotaton. Moreover. the physical macroscopic stresses. 1.e. in the form



103% C. Boutin

C". e (U/), are necessarily symmetric. Finally, the source terms are force densities, which
do not introduce micropolar couples. Consequently, even when taking into account higher
order terms. under homogenizable conditions, the macroscopic behavior of the elastic per-
iodic composites can not be identified with the behavior of a Cosserat medium.

It is clear that this conclusion comes from the essential assumption of local invariance
of the variables, which is expressed in our case by periodicity. As a matter of fact, this
hypothesis does not allow rigid rotation of the cell, and implies the symmetry of the
macroscopic tensor stress (see Section 2.2.5).

Surface average of non-invariant stresses. At this point another question arises : could
we find a Cosserat media by dropping the hypothesis of periodicity of the variables, i.e. in
non-homogenizable situations?

Using the same notations. eqn (6) can be written in the more compact form:

»

6. mdr = | (e-n)(y.m)ds. (15)

Ve

i

v

Let’s apply this relation to the cell Q. where m is equal to e; and e, respectively :

~ ~ ~

l a.e,dz‘—J (o.n)(y.e)ds :/,J

JE2

(a.e,-)ds%—j (6.n)(y.e)ds

Q Ay Stk k#1

r "
[ a.e,dr:J (6.n)(y.e)ds =/ t (a.e/)d.s'+J (¢.n)(y.e)ds.
Stk k#£j

JQ 0 RV

By dividing by |Q], taking the scalar product by e, and e, respectively, subtracting the
two equations. and finally using the symmetry of 6, we obtain:

~ "

(IS, " (.e)ds].e,—[IS1 ' | to.e)ds]. e
Y

O

(U,k)(Y-e/)dS_J ("'jk)(Y-ei)dS-

eSTh A ey Stk k#£1

We notice that when the periodicity is not assumed the surface integrals do not vanish,
and therefore the surface averaged stresses are not symmetric.

However, a global description corresponding to Cosserat media will be obtained when
the condition that, the state of ““global stress™ is actually a tensorial state of stress is obeyed.
Consequently we have to examine if the surface average of tocal non-periodic stresses define
a Cauchy tensor. In this aim. we follow the same reasoning as in Section 2.2.5. Applying
relation eqn (15) to the volumes Q and Q' respectively, we get :

~ » ~

j o.mde = (6.n)(y . m)ds =/ (a.m)ds+J (6.n)(y.m)ds
Q JQ o SA S+j J#k

‘ 6.mdr = ‘ (6.m)(y.mydsy =/ (a.m)ds+J (6.n)(y.m)ds.

Jo Jia Js r+

Then. the surface average of stresses acting on the face S, T(m) = |5| "IS (6.m)ds, is
related to the surface average of stresses acting on a faces S, by:
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) ~ ~
{

T(m)—m,|S,| ' | (6.¢)ds=1Q] ' | e.mdr—|Q| ' l o .mdr
oSk Jo Jo
Ty ‘J (@.m(y. mds+|Q| ‘J (o.n)(y.m)ds.
I+ S+ J#k

In case of periodicity, the two volume integrals were equal and each surface integral
equals zero. Now, when relaxing the assumption of periodicity, these equalities are no
longer true (when m is different from the vectors e,). Consequently :

T—m S, ' | (6. e)ds#0

J Sk

It results that the surface average of stresses in a direction m cannot be deduced from
the knowledge of the surface average of stresses acting on the faces defined by the reference
frame (as it would be for Cauchy stresses). Thus, when stresses are not periodic—more
generally, do not present a local invariance-—it is not possible to define a tensorial state of
global stress. and therefore the overall behavior does not correspond to the one of a
Cosserat medium.

In conclusion. when studying elastic composites. one is confronted with the following
alternatives:

(a) Either, the situation is homogenizable and then a macroscopic tensorial symmetric
state of stresses exist. The microstructural effects are described by a microstructural forces
which implies non-local effects.

(b) Alternatively, the situation is not homogenizable. Then the surface average of
stresses are not symmetric, but these surface averages of stresses do not define a Cauchy
Stress state. As this point is in contradiction with a buasic assumption of Cosserat mechanics,
it results that the medium can not be described by Cosserat mechanics. Moreover, the use
of “non-Cauchy global stresses” has to be done very carefully for the following reasons:

e Since “"global stresses™ are not tensorial. there is no tensorial “global stress—strain
relationship. For example if a ““global stress’ -strain relationship is established in a
given frame. the usual tensorial rules are not applicable to deduce the relationship
for any other frame. More generally this result poses the question of the definition,
and even the existence, of a constitutive law (linking strains with...?).

e The use of non-tensorial “"global stresses™ do not allow to express boundary con-
ditions on a surface of various orientations. In this case (i.e. when the boundaries
of the medium are not plane) the only possibility is to express the conditions at the
microscopic level.

Discussion. Since these results are not in agreement with the approaches developed for
stratified elastic half plane by Milhaus and Vardoulakis (1986) or Papamichos et al. (1990)
let us examine more precisely their work.

In these articles the “stress-state™ in a stratified medium is described by surface
averaged stresses. The equations governing these non svmmetric “"global stresses™ are
deduced and correspond to the moment balance of a Cosserat continuum, provided that
adequate calibrated coefficients are introduced. For this reason, the authors formally
identify stratified media to Cosserat media.

However. this is not sufficient to justify the application of this theory : it must also be
verified that the others assumptions are fulfilled. This is not the case here since, when
“global stresses™ are not symmetric, they do not define a tensor. To our knowledge, this
essential problem was never addressed.

Nevertheless. the consequence of non-tensoriality of “stresses™ only appears when
considering inclined surfaces in the reference frame. Thus. as the treated problems only
involve plane boundary conditions. this difficulty disappears and the solution obtained by
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this approach. for this kind of problem. is correct. and therefore the Miilhaus approach
becomes relevant (independently ol the inappropriate use of the term “"Cosserat medium™
for the stratified material). Thus. the case of stratified half plane is a very interesting since
non-homogenizable situations can be modelized by using “non-Cauchy global stresses™. This
feature. which is due to the “one-dimensional aspect” of both medium and boundaries, is
specific to this problem and the obtained results cannot easily be generalized neither for
other medium. nor for other boundary conditions.

353 Applicarion to the study of the occurrence of the localization. At present, numerous
experimental studies- -for example Scarpelli and Wood (1982), Desrues (1984) and Boulon
(1988)—address the emergence of shear bands in heterogeneous materials such as soils,
rocks. and congrete. [1 is now well established and admitted that this loss of homogeneity
in the macroscopic deformation of the sample——or the studied structure---is linked with the
presence of a microstructure in the material. In other terms, when the localization happens,
the microstructure is involved in the response of the material. Thus, the mechanics of
continuum media is not the most adapt theory to describe this kind of phenomena. More-
over. while a shear band occurs. experimental observations show that the deformation is
localized 1n a domain having a thickness of about 10-20 grains or heterogeneities (i.e. L
roughly equals 20 x /s0 ¢ = Sx 10 ). and more generally the localization expands into the
high gradient zones.

Finally. the use of microphotogrammetry for rocks and concretes has clearly shown
that the strain inhomogeneity can huppen even when the behavior of the material can still
be considered as elastic (at least macroscopically).

From a theoretical point ol view. localization phenomena. are usually considered as
the expression of a mechanic instabilitv. linked with non-linear behavior, and resulting in
bifurcations in the solution (Hill. 1962: Mandel. 1966 and Rice, 1977). These theories,
developed in continuum mechanics. lead to a shear band of zero thickness. which is not in
agreement with observations made. In order to have a better description of the experimental
reality, the use of constitutive laws of Cosserat. non-local or double gradient types, which
introduce microstructural effects. have been proposed since the beginning of the 1980s,
particularly in the papers mentioned in the two preceding sections. The results published
show that the instability analysis and the microstructural approach complement one
another.

In order to illustrate the interest of our results. let us consider a rock which can be
considered as an elastic composite. A sample of this rock is submitted to a test which
1s deliberately non-homogencous (tor example. the Brazilian test) or it becomes non-
homogeneous because of uncontrolled effects (binding. eccentricity. surface unevenness,
etc.). Inareas where the deformation remains quasi-homogeneous. the material will respond
as the equivalent homogeneous continuum. Therefore, the effects of the microstructure,
needed for the emergence of localization. will not appear. But, in the domains where the
deformation is clearly non-homogeneous. these microstructural effects will develop. This
reasoning leads us to believe that the localization can only appear in these areas. which can
be identified using the kinemauce criterion obtained from the assessment of &.

However. this approach is limited o the characterization of the potential regions for
the emergence of localization within the bodyv. As a matter of fact. inside a well developed
shear band. there 15 no more scale scparation and the homogenization approach breaks
down. These conditions where L = [ ullow new local kinematics. different from those
corresponding to L » /. Particularly. rotations. shps. etc. of the grains can be observed.
The physics governing these phenomena is often different from the one determined by
homogeneous tests: the role of gruin angularity. granulometry. shape, etc. then becomes
essential. Consequently. we observe non-homogenizable phenomena resulting from micro-
scopic effects.

Let us remark that the second gradient approach is also limited by the same reasons,
but they are not explicitly expressed. Finally. the fact that the differential Cosserat equations
present a positive definite principal part do not insure the relevance of the model for
describing the physical phenomena.
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S, Description of the studied straufied composite.

1 THE ENAMPLE OF STRATIFIED COMPOSITES

The preceding results have been applied to the periodic stratified composites (Fig. 5)
which have alrcady been studied in a number of papers. for example Biot (1965), Auriault
and Bonnet (1983) and Papamichos er af. (1990).

This kind of microstructure presents the advantage of simplicity, which allows an
analytical expression of tensors the C" and C”. But. we will see that its one-dimensional
structure exhiubits some specific properties.

The determination of tensor €7 in periodic stratitied composites 1s interesting for two
reasons. First. 1t gives an exact expression which can be used in second gradient theories,
second. the knowledge of C7 altows ane to solve problems with any kind of homogenizable
boundary conditions which cannot be treated by “non-Cauchy stresses”. As an example.
the determination of the microstructural effects in the presence of any cavity—provided
that its size is large in comparison with the stratification thickness—can be addressed.
This kind of analysis ix important and relevant in composite engineering (fragilization of
structures by holes). envil engincering (tunnels in stratified rocks), ete.

We assume that the period (Fig, 5) is constituted of two isotropic elastic layers ¢ and
h. with respective thicknesses (/- ti.r and .. As we use microscopic variables to solve
elementary problems. w1 this system of variable. the period size is /1, = ¢~ 'h. Let Z,, t, 7,
. cqual the Lamé constants of the layers « and . We will note 2 (g, ...) the function
having the value 7, (. vinlaver aand 7, (u. .. ) in layer h.

Owing to the one-dimensional geometry. the fields depend locally only on variable y,
(which we will note simphy as v). Thus. the differential operators L 2, L~', L° take the
following expressions:

2 =200 Clny O] 0
Lo = Clu. ) O30
.y & ¢

‘0

0

Pl ey O Cus ) Cvad Clus) e A 200 Cuy ) icx )

L SCh s 20 Tty 0N+ Clus) GO Cp. 6(1)/8,]/8x
- ) =

ol Cxe s Ciey Cx ) O ) G Oxy HC[pd(ug )6 70X

|
3
Ol Ctaey v o Clisy Cn ]+ e ) C 10N+ Oudug ) /6, )1
L" is the common sotropice elastostatic operator expressed according to the v variables.

4.1, Llastic rensor C
Denoting by £ the components of the macroscopic strain tensor e (
L o“(uly+L (L =05~ written in the form

70
/

). the problem
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VA[GA+20) . 8y )/ Ev+ A+ 20 E| | + 2ES; + AEs]/dvy =0
‘a w. 0(uz) /Oy +2uE, )y = 0
(g . 6(us) /ey 4+ 2uE L )/éy = 0.

We now define four vectorial solutions X'', X*, X*, X'2 X"*, (X* = 0) associated with
E\\, E,., Ess, E|5. E\5. All the problems to be solved are of the type:

Cla. C(X).cy+plicy =0

with X ; (2 &(X)/¢y + B) continuous and h,,-periodic, and «, § constant in each layer a and
b. The solution is as follows:

X(y) = () aD(1;2).D(8)/D(x)

where, by convention, for each function ‘¥ taking the a constant value ¥, in layer a and ¥,
in layer b, we introduce the notations:

\_{f = [(1 _r)"\Pu +71 \P/'] ! D(\P) = T(] —T)hm(l},u—\ljh)
and /(1) being the function :

() [vih, —(1~1);2)/(1 —1) inlayera
V) =
o ~[vh,+1:2]it inlayer b.

Thus. we obtain for the only components different from zero:

X\ =k.f k = (4 2u) . D(1 /(4 20)
X=X =k [DA)DG+20)].f with
XP=x=2m.f m = (). D(1/p).

Consequently, the stress fields ¢/* associated with E,, are:

o't =0+ 20(1,10.7.0.0,0) n=il(A4+2u)

o7 =4 20N $.0.0.0)

o =2 $.5.0,0.0) 5= il —n)/(2+2p)
¢)'? = 2p(0.0,0.0.0.1)

o't =2p(0.0.0,0.1.0) b = 7+ 2u/(A+2p).

7Y =(0,0,0.24.0.0)

We get the macroscopic elastic tensor by averaging these elementary stress fields. The
components which do not equal zero are the following:

CUY =420
COH7 =C% T =+2m8+ Q2>

.g: o C(;‘x — Cu 22 C(l)l 33 =(/1+2/1)<’7>
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(’”z’: = ((_WI: Y= (i'!‘ 2/t)<,\
Cli = O =00 =2 (16)
Macroscopically, we obtain a cylindrical orthotropic elastic material. It is easy to verify

that the tensor given by the expression eqn (16) is valid for any one-dimensional distribution
of the elastic coefficients ~ and u which generalize the results of Auriault and Bonnet (1985).

4.2. Tensor C’
The tensor C' is determined from the elementary solutions of the following problem:

L:(tlf‘)+L I(ll,]\) — V\ ) :[’(m M(,u] ) ,e\(U“)}.

The solutions u; depend on the gradient of strain tensor V e, (U") whose components
are noted E;,. Taking into account the cylindrical symmetry around axis 1, axes 2 and 3
are equivalent, so that we can restrict the number of problems to be solved (other solutions
being obtained by index permutation). Thus we then treat :

[( +200u) )i~ G2 E XU R )XY EL]e, =0
[l‘a(m Y€ X E s+ X Ea )2 XY L ]y
= (242 ({ny—mE i+ (P> —=PVES- +‘<‘7'>*‘,‘)En_:} +2(uy =W Ey; ;.
All the problems are of the following type:

Clr.c(Y).o.+pX)C, = o —x

with Y (2 &(Y);¢,+ fX) continuous and A, -pertodic and x: f; x constant in each layer.
The solution is of the form:

DGO[CFay — Fia] + < Xp 2y — [ Xp

where ;

- vvih, —(1—1)] 2(1—1) inlayera
F(v)y = ' f(u)ydu = ! L _ R ) . Y
. C=vih, 1] 20 inlayerb.

Thus. we get the components which do not equal zero of Y/, whose expressions are
given in Appendix B:

Y"H Y% — Y?H )'}.‘3= YI.”
Y;]} — ’l“ ),% r_ ),',211 }’;FZ — Y%Z}
),.'gil — }f]}\l },g — )/%?Z.

The stress fields ¢' resulting from the gradient of the macroscopic strain is deduced
(Appendix B). The only fields which do not equal zero are those associated with

Eno By Ena By Ens Ess Eans By Esn B
However, the calculations show that even though these stresses of order ¢ do not equal

zero, they have a zero average on the cell. Thus, this one-dimensional microscopic geometry
presents the particularity of defining an anisotropic material, for which:
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C'=0 thusC =0.

This is due to the fact that the strains of first order are constant in each constituent. In
the more general case where the microstructure has a two-dimensional or three-dimensional
geometry, this point is no longer true and C” # 0.

4.3. Tensor C”
As C' = 0. tensor C” is determined from the elementary solutions of :

Ly +L "y = -V, . ¢ Ve (UM

Taking into account the expressions of u7. ¢'. and the cylindrical symmetry, we now
solve the elementary problems:

Cler =200y G~ =200 E A YT Es  + VI E s )+ Y E g

ALty o+ X E A+ X E )2 X Y E e
= (=20 = ME 0 = OVE ) (G = ) Esaa ) 2K — ) Eqa s

These problems can be expressed n the form:
oy C+HPY]C =g f

with Z: (% ((Z).¢ +pY) continuous and /,-periodic and «; f§: x constant in each layer.
In order to determine C-. it suffices to state the expression of ¢(Z)/¢, as:

ALYy O =yF s yF 0y 2+ (2aYpixy—Ypja.

We can thus determine the stress fields ¢ associated with the second gradient of the
strain tensor. After averaging, we obtain the components (which do not equal zero) of
tensor C” which are given in Appendix B. We note that this tensor is not isotropic. Moreover
it clearly appears that C” is homogeneous to Pa.m” and involves the square of the size 4 of
the microstructure and the mechanical properties of the constituents of the cell. Finally, it
should be noted that for a given concentration 7, the more the contrast of Lameé coefficient
is obvious, the more the values of C” are large. and. for a given mechanical contrast, C" is
even larger when the heterogeneity concentration is high (t = 0.5).

.

5. CONCLUSION

The homogenization method developed at higher orders is useful when analyzing
microstructural effects. Indeed this approach highlights under which conditions an het-
erogeneous material behaves as a continuous or discontinuous media, from a qualitative
and quantitative point of view. In brief. we revert back to continuum mechanics only if the
period is an “infinitesimal™ volume. relative to the studied phenomena. Conversely, the less
negligible the period size is—in comparison with the phenomena (i.e. more inhomogeneous
the macroscopic deformation is)--the more important the microstructural effects are.

From the detailed analysis of the macroscopic variables at higher orders, we prove
that, even in the simple case of elastic composites, the microstructural effects do not
correspond 1o a modification of the strain tensor or the usual strain—stress relation, but
can be simulated by a chain of microstructural volume forces and displacement fields of
increasingly lower amplitude.

The source terms introduce non-local effects since they involve the successive gradients
of deformation tensors. This point shows that the more inhomogeneous the macroscopic
deformation 1s. the more important the effects of the microstructure become. Moreover,
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new cffective tensors €. C7. ete. which depend on the microstructure appear in the source
terms. Thus, we clearly show that the role of the heterogeneities 1s not only of topological
nature, but includes also local mechanical properties. and we demonstrate that the incidence
of the microstructure is stronger for higher contrasts of elastic coeflicients.

These effective tensors depend also on the macroscopic volume forces applied to the
material, so they are not material tensor. siricto sensu. However they can be considered as
“quasi-material” since for a giren distribution of macroscopic volume forces—which is
usually the case—these tensors are independent of boundary conditions. Finally, we have
to keep in mind that the macroscopic descriptions including higher terms do not strictly
define behaviors.

The boundary conditions for solving the involved equations up to the third-order are
given. Thus, for a given problem in a given material, we can get a local assessment of «
which can be used as a kinematic criterion for the occurrence of microstructural effects
(without considering edge eflects).

The comparison between these results and other microstructural theories show that
the tensorial description obtained by homogenization is a generalization of the more usual
second gradient approach. Indeed. the first significant microstructural effects usually involve
anisotropic terms linked with the simple gradient of strain. and only for specific cases such
as macroscopic isotropy (or stratified composites) 1s the correction of a higher order. linked
with the second gradient of strain.

Conversely, according to this approach. it appears that the microstructural terms can
not be stmulated by Cosserat mechanics.

Numerical simulations and comparisons between those three theories and the more
general non-local approach developed by Eringen (1972) will be performed later.

A concrete application of these theoretical results to the periodic stratified elastic
composites is presented. for which we show that € = 0 and we also give the expression of
C.

These theoretical results can be used for the experimental study of the occurrence of
the localization. We saw that this phenomenon s linked with the characteristic size of the
macroscopic strain. this size being associated with the inhomogeneity of the deformation.

However. the experiments are usually designed in order to have samples with the most
homogeneous macroscopic deformation possible. For this reason the formation of the
localization is due to parasite effects which are not eusily controllable.

This difficulty could be reduced it - -after behavior determination under homogeneous
conditions—tests with prescribed inhomogencous macroscopic strain were performed. One
alternative consists of using the propagation of wuves having a length close to that of the
grain size. However. this measurement can only be qualitative, since the inertial effects
modify the description established in the static case. In statics. this imposed inhomogeneity
could be governed by boundary conditions (loads or displacements) applied to the sample.

Finally. let us recall that these results have been obtained with small strains. for elastic
periodic microstructures and can only be used if there remains two distinct scales. The case
of random materials is still an open issue. However it has been shown by Auriauft (1991)
that when 4 phenomenon is homogenizable. the strucnioe of the equations remains the same
in both cases. This point 1s not established for higher order terms, but the agreement of the
theoretical and experimental results for the Ravleigh diffraction seems to confirm this
assumption.

When there is no more scale distinction. as 1~ the case i a well developed shear band.
the approach proposed here is no longer apphcable. Morcover. these conditions where
L = [ allow local kinematics different from those which appear when L = [ and the physics
governing these phenomena s different from that obtaimed from homogeneous tests. Conse-
quently the observed response at the “macroscopic’ scale will result from this non-homo-
genizable physics at local scule.
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APPENDIX A
ELASTOSTATICS OF PERIODIC MICROSTRUCTURES

In this appendix we give the theoreucal developments which lead us to the macroscopic balance equations
up to third order

AL Resolution of the problems at different orders
In order to simplify the expressions we will write ¢ and p instead of e(v) and p(1).

Order i °. The first problem one must tackle is the following eqn (1a):
Loy =V e e ()] =0
whose evident solutions are constant fields on the period : u' = U"(v).
Order o~ At this order we have the svstem egn (1)
[T I A T

which can be written
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Voo e )]+V, [c..e ™)) =0
As a consequence ol the linearity of the problem. the general solution becomes :
attvv) = Ueo+ Xov o e (UM
The third-rank tensor X 1s constructed from the particular solutions X* such as
SO = VYV i) =0 XD =0

(°V, is the symmetrized gradient tensory. The variational formulation is the following:
“ vy e nyde = | [e,tivd . e tX+e. e (w))de =0
Jo Jo
Using index notations. we have more explicitly
e UV X e ol
The vectors X* being the solutions to the systems

o

Sera e YT W@ 0 Xy =0,

Order ', With respect to this order the macroscopic balunce equations are no longer obvious. We obtain
them by integrating over the cell the considered system (1¢)

L oucv= L L™
which is more convenient to wrile i1 tts cquivalent form:
Voa' +V 6" —ptorf (v = 0.
Taking into account the stress pertodiciiyv, we have
V [e"-pt"=0 6= (e )+e (U]

Then, by putting the expression of «’ into ¢". we can deduce the macroscopic momentum equation at zero order
eqn (8a):

VoC" e (M) = —oport Cl s ey
The set of equations allowing the determination of w 1s
Voo teiretan]= -V i qetr+ret "N +p) ']

In this equation we substitute 17 by 1ts expresston and p(+) /" by the macroscopic dynamics eqn (8a) obtained
above. We then get .

Vole e tuy—e (X e td"m)=V, Jeetd ] = Vo [¢" e U")—=BC". e (U")].
In order to simplify the notation. we introduced fi{v). the rato of the density to the average density :
By = plr) <p

We observe that the solution «~ depends on two forcang terms .

e The first one is associated with e ({'').
e The second one is associated with V.e {{ '} i.e. the yradient of the strain tensor of the displacement U at order

ZETO0.

As a consequence of the linearity of the system. the field solution is a linear combination of particular
solutions associated with each of these forcing terms. It 1s important to notice that the problems linked to the
displacement at first order are identical to those already treated at zero order. Consequently we have:

wivoe) s Ly =X e iU 2 Yo Ve (U
The fourth-rank tensor Y is constructed from the particular solutions Y and verifies :

s CXme VY]V e ] e o o et (Y = 0.

which corresponds to the vanational tormulation
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| Colvboce oy de = I le oy v ertr+c X e tm)]de = | [¢"(y)-
Ja

o

- BO)CY] e de

Or when usimg the indiciul notaton
0 { -X'e ’,,l,(l Vi Y "V C\(lr.‘\)A/,,x»
Fhe vectors Y bemg the solutions to the systems:
ol XD cTe Y0
( e pCt el YTy = ().
Order - As aboves we finst establish the balance equation at this order. We obtain:

Ve |t 4 o e ey e s
In order 1o have an equation where only average displacements appear. we introduce the expressions of the

fields that have already been determined. Thus, we get

ey Vel =X el p-eiX e +UN]=e¢ L Ve U+ e (UY)

Consequently . the momentum balance wt the first-order s egn (8) ¢

I'he determmation of the tield o . s achieved by ~solving

Voo e ] Voo fee ) e (u)).

That s when expressing the ditferent hields
Voo e -etY Ned " nl=V N el =V el

Voo de Y Vel mieXe (L") Vo [e. (e (X, Ve (UY)))+e (U")]

socmtroducmy the tensor Cand ¢©

Voo e e Y Ve =N N el N ey = oV e Ve (UMY + e (UD).

Letus now substract from this equation the momentum balanee at the first order feqn (8b)] multiplied by f:

Vel "n! =V XN el n-V ool )

Voo e e}
Ve = pCT L Ve (UY) -V L[ =BCY) e (U).

We nonce that the solution i depends on three foramy terms associated with:

{a) the stram tensor of the average displacement at second-order

(hy the gradient of strain tensor of the average displacement at first-order :

1) the double gradient of strain tensor of the displacement at sero-order.

The first two terms lead to the preceding solved problems and only the latter. introduces a new problem to

be sohved Because of the neanty . the solution is as follows

Uta=X0o el =Yoo vV e+ Zevy .V Ve (UY).

dUvo)

Z 1~ the ntth rank tensor constructed frony the particukur sotutions 24" 1t verifies the equations :

Yo V|2 <Z>=0.

[ ¢

Volooa) oo ponCl).

Or.with indicial notaton
ST X e ol ey Vel Ve Zf’vrwv‘v\e\((v'l))wmu-

where the vectors 70 are the solutions 1o the systems
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U= Y e, JL0) LT =0

(2w BOLA el
Order . At this order we are only interested in the momentum balance. which is obtained as above:
V [o3]=0 <6 =< e i~e )]
After replacing u” and «* by their expression. we get egn (8c¢)

VoC . el = V. [C . .Ved")-V |C° VVeil"] C =<3
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Note. These results have been obtained m the case of a volume force p(v) /" (x). The case of constant volume
force—and therefore no volume force--can easily be deduced by putting in all the developments f = 1. Let us

mention that the formalism remains the same but the expressions of tensors C' and C” would be different.

Relation berween tensors ¢ and ¢'. From the variational formulations we can fink ¢' and ¢”.
Let us transform the term including Y. in the expression of the average value of :

Gl = XA e VY] e X e [V

In order to achieve this. we use the variational formulattons ussocuated with the fields X*'. They express that

any continuous periodic field w verifies

¢ e ow)dr = e o et X Odr

When we chose w = Y*”_ taking into account the symmetry ol . we obtain

’ [elbm — X dre = . [ele, AY ) de = e (Y oo e (X7)dr.
Jo

"] 0

Now. using X" as test field in the variational formulation assoctated with Y**. we get

,,' e (YY) o e (X)dr =
Q

o o2

[V - comXe, ()] dr

So:
) = [ | e X e X R

.
o0 Jo

)

That is. when introducing ¢ :

e = |V X de - | X dre

w8 Nt SO
And, replacing the divergence by its expression. we establish the identity -

[ GRS (‘;Q,H" (;)X;_’ Soprel XY

—en X

Note. In the case of constant volume forces this relation becomes

which proves the antisymmetry of tensor € in regards with the (1) and (4. /) index.

APPENDIX B
CALCULATION OF TENSORS C"AND " IN STRATIFIED COMPOSITES

Notations
For any function ¢ taking the constant value y, in the laver ¢ and , in the layer b
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W= ey, el = (=T, =T D) =11 —0)h, (b, — )
k=02 +20D (24 210) m = uD(1/p)
no=s(r+2u) ooyl ) =20 o=+ 20 (A 20)

) [vh,—(1=1)2](1—1) inlayera
f(v)isthe functiondefined by 1 # (1) = )
~(vh, +1/2]t in layer b

. vivih, —(1=1)}2(1—1) inlayera
Fiyyisthefunction:  F(uv) flu)ydu = )
— [y, +1)i2t in layer &

Determination of C'.
The components of Y which do not equal vero are the following :

YU = kL (KFY - F)
Y= ¥ =k DG D20
YU =Y =2mogl e k)

| R % (VY L Y P T 12+ 210 D(n)

-~
)
Il
~
H
=
—~

YD)y D 20) + (i) — Fip) (A4 2u0)D( )
VU Y ek (F - FIDU) DG = 20 + (S — Fi) G4 20D()
Yo=Y =2m < F R

¥it= vt

[

HF e~ F b,

We deduce the expressions of the stress fields (different from zero) which result from the gradient of the
MAacroscopic strain tensor:

e =T =4 29 — D) 2m
BT e LT = 200 D R2m
AT e = G 20D f

LT =0 T s D) S

e =l = 2Dy f
o= = SDg !

Note that the components of the stresses ¢ are of the type - f and consequently :
C =0 s C=0.

Deterntination of C.
The expressions below give all the components of C* which do not equal zero. The non-explicitly written
terms are obtained either by substituting index 2 by 3 -if index 2 appears alone (for example C3,'*'? = C5,'*'?)

q

--or by permutation of index 2 and 3 (for example C7, %' = €7, °**"). In order to simplify the writing we note :

D(E (220000 = DO G~ 2u0 — D) i (24 2p)

CH v =k ia+~2D0p . m 6
Ci. " = h 2+ 21D(¢) . m 6
U =+ 20D m 6
CH 'Y = G+ 20D00 (DM +DL G+ 20) 20 6

CL = (24 20D D) +D(T =20 20 6

CL7Y =M+ 20D D) k=D 2+ 2100 25 6

vzl

L = G 0 DO [K +DONGA+ 20 1) = 250D G 2p) D /12
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T4 2 DDA - DO 200 w) + 2+ 20D 2+ 20 cpDop 12

T+ 2 Dopth Do Des = 20+ DGO = 200 i)+ L= 200D (24 2)) . D() 12
e 20 Dok D Do 20+ D@2 i) ¢z f 20D G+ 200 imD() )12
T 20 DEA DG D 2504 D@+ 250 g ¢ s 2D 4 200 i) D(@) | 12
U+ 20D00 Dupik DG DU 20+ DE 20 1] - Gt 20D (G- 20)DG)} /12
S+ 200 Dioih DG De - 20+ DEe + 240 g+ o+ 20D (7 =2u) . )D(;) 12
Y20 Dok DEY D - 200+ DO+ 200 w1+ = 20D G20 DG 12
S 20D DL = 200+ Dopy g 12

= 20Du0 DO = 200 DG DG 20 + Diegd g 12

20Dy DO = 2000 Dy DGR 2+ D6 e 12

“mDG 6

D oD 6

Sk 2o D @ 6

S yoms oD o6

TGk 20Dan 12

Vo 20Dy o 12

U4 0Dey 1l

Dy .m 12



