
rf!) Pergamon

ii,': I ''\0//(/1 .'1fni' iI/re.' Vol. .33. :--.rD. 7. pp. 1023-1051, 1996
Copyright ( 1995 Elsevier Science Ltd

Pnnted in Great Britain. All rights reserved
002ll-7683i96 $1500 + .00

0020-7683(95)00089-5

MICROSTRUCTURAL EFFECTS IN ELASTIC
COMPOSITES

C. BOUTIN
Ecok NallOnale des Travaux Publics de rEwI. Laboratoire Geomateriaux,

DGCB LRA C.'iRS .'io. 1651. Rue Maunce Audin 6951X Vaulx-en-Velin, Cedex. France

(R~«'lredl Mal' 1994: in raised form 4 Al'ril1995)

Abstract - In thIs paper. the static 111lcrostructural effects 01 penodlc elastic composites were studied
by the homogenization method. This approach is based on the analysis of the momentum balance
equations which appear at higher orders. The physical meaning of Ihe corrective terms due to the
existence of heterogeneities is discussed in detail. We sho... that the higher terms introduce the
successive gradients of macroscopic stram and tensors characteristIc of the microstructure, which
result in non-local effects The boundary conditions for solving problems up to third-order are also
given. This analysis is used to define a kinematic criterion for the occurrence of these microstructural
effects. and a procedure to assess them. The obtained macroscopic description constitutes a gen­
eralization of the second gradient theory. but it is not m agreement with the mechanics of Cosserat
media. 'v1oreover. these results can be used to approach the ~merqel1Ce of localization phenomenon.
Finally. an application of the method is given using periodically stratified composites as an example.

I INTRODUCTlO"

The materials used in CIvil engineering (concrete. rocks. steel. etc.) or in industry (com­
posites, metals. etc.) often present a structure in which different components are assembled,
therefore leading to a heterogeneous material. However the design rules of the buildings
made with these materials are essentially issued from the mechanics of continuous media
applied to homogeneous media. The good mechanical behavior of many constructions built
according to these principles proves that this method has stood the test of time. This simple
remark led us to think that. under certain conditions. these heterogeneous materials can be
regarded as homogeneous continuous media.

The homogenization method of periodic media developed by Sanchez-Palencia (1980),
proves that a heterogeneous medium can behave as a homogeneous material in compliance
with the equations of continuous media, provided that macroscopic size, L, is infinitely
large in comparison with size I of its heterogeneities (i: = I L ---> 0). However, in reality, this
limit is never reached because the microstructure size does not equal zero (l =f. 0) and the
macroscopic size characteristic of the load applied to the material does not give an infinite
value (L =f. ::x:;). For these reasons, it has become interesting to investigate how the descrip­
tion of the medium deviates from the homogenized behavior which complies with standard
continuum mechanics.

This study deals with macroscopic phenomena whose characteristic size L is large, but
not l'ay large, with respect to size I. Under static loading. these phenomena can be observed
in samples constituted of few heterogeneities, in cases of stress concentration, for example
at the vicinity of a load or near an angular boundary, and also during the formation of a
shear band (Fig. I). In dynamics. this situation corresponds to wavelengths which are about
10-100 times greater than heterogeneities.

In this article. we will consider elastic periodic composites submitted to static loadings.
Although the elastic behavior is very simple, this example is instructive since it allows one
to clearly understand the influence of the microstructure on overall behavior in determining
under which conditions this influence is negligible. and. on the other hand, when there is
an influence. to show how it modifies the response of the material.

The homogenization method which. according to its principles, takes into account the
existence of a microstructure. is particularly well adapted for this type of analysis. This
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L t
hg 1 Cases where the lllacrO'Ll"j'Il' 'lie r is large but not very large in comparison with /,

technique of asymptotic expansion allows description improvement by exploiting the terms
of higher orders and considering their role in macroscopic behavior. Such an approach,
which, contrary to the common process, is not limited to the first significant terms, has
already been proposed by Gambin and Kroner (1989) and Boutin (1993) in statics, and
also developed in dynamics by Boutin (1991) and Boutin and Auriault (1993),

In the second part of this article we recall the basic principles of the homogenization
method, Then, the equations governing the macroscopic static behavior of an elastic
composite are presented, up to third-order. In the third chapter, the results obtained are
discussed, and their interest in the study of microstructural effects is presented, Then, a
comparison of the homogenization method with two other microstructural approaches­
second gradient and Cosserat media theories---,·is given, and the application of the method
to the study of the emergence of localization is discussed, Finally, in the fourth section this
approach is applied to periodic stratifled composites.

2 HOMOGEl\iIZATIO:\ OJ Il\STlC COMPOSITES (TO THE THIRD ORDER)

Before going further into the details of the method, let us flrst present some general
considerations about homogenization,

The aim of any homogenization method is to give a description of a phenomenon in a
heterogeneous material. where the local fluctuations due to the heterogeneities do not
appear explicitly, Obviously the possibility of such a description depends on the studied
case. In which condition is it. then, relevant to employ a homogenized description?

First of alL there is no way to obtain such a description if the studied phenomenon
essentially varies at the level of the heterogeneities. For this reason, a basic reason to have
a homogenized description is that the phenomenon actually presents a characteristic size
of evolution, L much larger than tha t of the heterogeneities. This means that one variable
(at least) related to the phenomenon varies according to a macroscopic length L. Thus, the
research of a homogenized behavior makes sense only if the following two conditions of
scale separation are fulfllled. The tirst concerns the material. which must be sufficiently
regular so that one can deflne a cha racteristic microscopic size I. The second is related to
the phenomenon for which the characteristic size of its variations must be large in com­
parison with I. From these condItions it results that "some invariance property" has to be
fulfllled at the local scale by horh material and phenomenon.

For the material, the simultaneous existence of a characteristic size and a local invari­
ance, means that it is possible to deflne a rcpresentatiz'e elementary l'olwne. Practically, it is
difficult to propose a rigorous deflnition of such a volume, likewise the definition of the
particle in continuum mechanics is not strict In fact there is some similarity between these
two notions since both have to be'

• not too small
to obey the continuity assumptlon (continuum mechanics)
to be representative (homogenIZation);
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• not too large
to be considered as infinitesimal (continuum mechanics)
to respect the scale separation (homogenization).
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However there is a kind of materiaL namely periodic materiaL for which this difficulty
disappears since the period defines the representative elementary volume without any
ambiguity. In this case the "invariance property" is expressed by the periodicity of variables.

In the same way, there is no strict definition of macroscopic length. Often this size is
estimated from the typical size of the overall volume studied, or by the size of the tested
sample. However, with respect to the problem in consideration. L can also be determined
by the boundary conditions or by a size related to the physics of the phenomenon (like
wavelength, thickness of diffusion layer, ... ). As a matter of fact, a first assessment of L
can be deduced from the dimensional analysis.

The conditions of "homogenizability" necessarily induce some specificities for homo­
genizable situations.

A priori. the behavior of a heterogeneous material depends on the whole of the
heterogeneities. However the existence of an elementary representative volume allows, by
definition, one to extrapolate the properties of this volume to those of the material. More­
over, since a characteristic variable of the phenomenon varies at the macroscopic scale, the
gradients of this quantity Q are constants close to zero at the level of the representative
volume. So, under homogenizable situations, the solicitation applied to the representative
volume is not arbitrary. Consequently. it is not necessary to know all the properties of
the representative volume. but only those related to forced homogeneous solicitations in
gradients of Q.

In other words, some of the properties of the representative volume do not intervene,
and therefore cannot be put into evidence, under homogenizable situations. This remark
allows us to understand more clearly why the response of a material can be significantly
different in homogenizable and non-homogenizable sItuations.

Finally we note that a leading hypothesis is the local inrariance. In fact the periodicity
is only a simple and efficient way to express this assumption. For this reason, when
considering the same physics at microscopic level, the macroscopic description will be of
the same kind whether the microstructure is periodic or not. As already underlined by
Auriault (1991) the structure of the equations will be the same, but will have different
coefficients. This point. which has been experimentally confirmed for numerous phenomena
(Darcy's law, suspension's viscosities, thermal and elastic coefficients, etc.) allows, in some
extent, the use of the periodicity assumption in order to analyze real materials.

It is important to note that these considerations are only valid for homogenizable
situations. Obviously. when there is no scale separation, the phenomenon is essentially
determined by the local organization. so that descriptions for periodic or disordered media
are structurally different. Experiments such as high frequency wave diffraction are also in
agreement with this intuitive idea.

2.1. Principles of the homogeni::atioll method
In this chapter we will describe the main principles of this method which is now

commonly used to solve multiple scale problems. Basically, it is an asymptotic method with
double variables. initially developed by Benssoussan et al. (1978) and Sanchez-Palencia
(1980).

The microscopic scale, described by variable y, is determined by the microstructure,
having I as a characteristic length. Variable x is associated with the macroscopic scale, the
characteristic length, L, of which being determined by the loading or the boundary con­
ditions applied to the material. The small parameter f. is defined by the ratio of the two
scales:

i: = IiL r = I \.

The use of the two variables 0\ and .1' leads us to transform the common spatial
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derivatives into (' \+ ~ -- I (\ and to put the variables in the form of asymptotic expansions in
power of 1:. For example, for the displacements:

U(Y. r) = I/ II (Y. r) with: O(u') = ull
.

Moreover, the periodicity of the microstructure induces the same periodicity of the
functions u' according to variable r. The homogenization process consists of, expressing in
the form of expansions the equations governing the physics at local scale, identifying the
terms with the same power of E;, and finally. solving the problems obtained in series.

In principle, this method of asymptotic expansions is all the more reliable as £ is small
in comparison with I, that is. when the separation of scales is clear. In this case, the
description obtained at the first significant order corresponds to the macroscopic behavior
of the material. to an accuracy oj I: Note that for a given medium, length 1 is fixed, and
consequently. the real behavior is all the better described by the homogenized behavior the
larger L is in comparison with 1

2.2. Homogeni:::ation applied lo e{(/Ill( compo,lire.\'
A number of studies, such as Sanchez Palencia (1980) and Auriault and Bonnet (1985)

address homogenization of elastic composites under static or dynamic loadings, according
to period geometry, the contrasts of the mechanical properties of the period components
etc. In these works, the macroscopic description is given by the first significant order
obtained in the homogenization process. The determination of higher orders was initiated
for the elastostatics of composites by Gambin and Kroner (1989) who gave their expressions
without analysis of the physical inSight Following this work the developments at higher
orders were derived and their physical meanings analyzed, for dynamic cases Boutin (199 I)
and Boutin and Auriault (1993) for sta tic cases, Boutin (1993), and for thermal conduction,
Boutin (1995),

2.2.1, The sel ojproblems lo hc,o{l'nl We consider a finely heterogeneous material for
which the elastic tensor varies locally according to a period Q (Fig. 2). Under static
conditions, a field of volume forces of the type p(Yljll(x) [where p(y) is the density of the
cell components] is applied to the material The problem is governed by the following
equations:

V. lit pi' == 0 (1 = c, . e(u),

where u is the displacement field. (1 the stress tensor. e(u) the small strain tensor and c the
elasticity tensor. The dot means contraction (.. double contraction, etc.) and V' is the Nabla

hg 2. MlCrnheterogeneous media \Ilth different kmd 11flocal structure (crystalline. fissured. porous,
composite).
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operator. If the variations of c are not continuous. these equations have to be taken in the
sense of the distributions. and u and (J. n must he continuous through the discontinuity
surfaces (having n as normal).

The existence of two weIJ distinct scales is expressed by using the system of double
variables x and y. Then the stress tensor takes the following form:

(J=e .. [e,(U)+lle,(lI)].

where e, and e, are the strain tensors calculated according to the variables y and x,
respectively. The momentum balance is thus written:

Using the displacement fields only. the initial prohlem is thus transformed as folJows:

where

L : (u) = V, · [e. · e, (u) I

L I (u) = V, · [e. · e,(lI)] -+- V . [e .. e,(u)]

LI'(u) = V, · [e. · e,(uJ].

When introducing into these differential equatlons asymptotic expansions. the fol­
lowing problems are to be solved in series:

L 2(u") =() I.e .. V [" I] =() (Ia)

L 2(u I) = -L 1(1/) V ["Ii] = -V,. [a I] (I b)

L 2(U 2) = -L I (u') - L"(u") - pili V, [" 1 = --V" [aO]-pr (Ie)

L 2(U l
) = -L I (u") - LI'(u') V [,,: ] = -V,. [0'1] (I d)

L 2(L(l) = L '(u')-L"(u') \. [" '] = -V,. [0'2]. (Ie)

2.2.2. Solution. Only general ideas are given below. The detailed solutions of the
problems for successive orders. close to that proposed by Gambin and Kroner (1989) and
Boutin and Auriault (1993). hut H'ith diff£'rent rolume jorces. are given in Appendix A. AIJ
the problems to be solved successively address the search for !1-periodic displacements
fields c, such as :

V, . [a" 'I = - \7, . [a'] - F' WIth (J = e .. [e,(r) + E'] (2)

where the volume force distributions are known (F" = pI !I and F' = () for i > 0) and tensors
(J' and [' have already been determined by the previous problems.

Because of the periodicity of a" '. a first condition (said "of compatibility") can be
obtained directly by integrating eqn (2) over the period:

LV .[" ']dr= r,[()·I]l1dS=O= L(v,.[a']+FI)dl'

I.e. :
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v, ,[(IT')J+ F (J \\ith = IQ! I r .dr.
~n

These are fundamental equation,. since they involve only the macroscopic variable x,
and express the balance of the force, of order I;' acting on the cell. This compatibility
condition being established, the determination of Q-periodic field r(x,r) is done by using
the variational formulation of the prohlem. To avoid indetermination due to fields of rigid
translation V(.y). we then look for the solution in the vectorial space W defined by:

Ij.·= ,1\ II !2-periodic. <II) = 0: .

Taking the scalar product of cqn (2) h:. any test field \r and integrating over Q, we get:

tV,.la' j.lldr= 1,,0' 1 •• e (lr)dr+J,,[O"'fl].Il.\I'dS

I (V ,[a']+F').lrdr.
'OJ

The houndar:. term being 7cro h\ penodicity. we ohtain after introducing the com­
patibility equation'

\!II'Elt I c .. c,(I') .. c,(II)dl
..,u

LV ·I',IT) -a']. Il'dr+ Lc .. E' .. e(w) dZ',

c satisfies an ellipticity condition SlllCC It is an clastic tensor. Therefore the Lax-Milgram
lemma ensures the existence and uniq ueness of a field r of W. solution which linearly
depends on the forcing terms. The gcneral solution is obtained by adding to 1'" any rigid
translation H\),

2.2.3. Results fhe malll resulh nf Appendix A are the following.
Displucemellts. The displacement fields can he expressed in the form:

liLy. 1) = 1"( \1

-ill (.y)+X(I)CI( 'II

-ri[L (\)+X(I)c\1 J+Y(I) .V,c,(0 I1 l]

Tensors X. Y. Z of rank 3. -+ and ". respectively. arc ohtained from particular solutions v",.
Those latter ha\ ing a zero a\erage. the mean displacement U(x) is given by:

StraillS. We denote hy 'V, and'V the symmetrized gradients calculated according to
x and r The field of strain is in the form:

e", =e([')-;--'V [X(r)e({')]

+I:e([ )-r-'V'IX(I) e ({ )],,'V,[X(I) .. CJUII)]+'V,[Y(r) V',c,(UO)]}

t::c({ ')+'V,[X(\)C (I ')]+'v,[X(y) .. e,(U1)]+'V,[Y(r) V,eJU I
)]

t'V',[Y(I) ... V,e(["I]-Y [Z(r)
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As tensors X, Y, Z are periodic with a zero mean value, we obtain by averaging:

This means that the mcan strain is thc strain o/thi' mi'an displaccment.
Stressi's. The tensor of local stresses is directly calculated from c(v) and e(x, y) :

I7(Y,r) = c(r) .. elY. I).

1029

The averaged values of these stresses allow us to define tensors CII
, <;C, <;2C2

, which
characterize the macroscopic behavior:

(l7(x,r) = Co. e,(['o)

+(''', .e,(cl=l+f:C ' ... V,eil:C ' )+1' 2 C 2
" .• V,V,e,(Uo).

where. using formal writing.

C" = 01 i I (c+c, .'VI(X))dl: 4th rank tensor (3a)
.Ill

C 01 I I (c.X+c. .'VI(Y)) dl 5th rank tensor (3b)
...,n

C= =0 I I (c. y +c. 'V,(Z))dl 6th rank tensor. (3c)
..,n

The expressions of C ' and C given by eqns (3b. 3c) show that.

(" = O(cl,,) and (" = O(d,:,).

where I", is the dimension of the penod expressed accordl11g to the Sl'sti'm ofdilated variables
r. Consequently:

1(" = O(c/) and ;:'(" = O(c!').

where I is the dimension of the cell expressed in thellstem o/ri'ference rariables x. Therefore,
in macroscopic equations. we necessarily have to use the effective tensors C' = <;C and
C n = <;2C2

• which can be directly calculated from known geometry and mechanical charac­
teristics of period components. indepi'ndenth ofi:.

h should be noted that the closer the period comes being homogeneous. the more the
values of C' and C" are small. Finally. note that tensor C' is of odd rank and therefore
anisotropic. It results that if the material is macroscopically isotropic (up to the second
order), C' = O.

Momi'ntum balance. At the three first significant orders. the macroscopic momentum
balances are given by:

V, .1(,," >] -Hp)r = 0: .' ,,") = C) .. e.(U Il
)

V,.[I'("')]=O (w')=C" .. e,(i:U )+i;C'."V,e,(Uo)

(4a)

(4b)
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(4c)

The variables used in the macroscopic description are the volume averages of variables
defined at the microscopic scale. Their physical meaning should thus be specified.

2.2.4. Physical meaning o( macroscopic displacements and strains. The macroscopic
displacements of any order U'(x) are volume averages of local fields utx,y). These dis­
placements U'(x) can therefore be interpreted as the translation of geometric center G of
the cell (OG = 101- 1fnO M . dl'). It should be noted that the whole period is translated
without local rotation.

There is no difficulty in interpreting macroscopic strains of order i, since they cor­
respond to strains associated with macroscopic displacements of the same order i.

2.2.5. Phrsicalmeaning oj' areraged stresses. The homogenization introduces volume
al'erages of local stresses at order i. Do the quantities thus defined correspond to the usual
physical definition of stresses which are fluxes of forces obtained through surface averaging
of elementary forces')

In order to examine this point. we transform volume integrals into surface integrals,
using the identity.

i.e. by integrating over a volume ~. and using the divergence theorem,

L(1". r, ./1. ds = - JI (V' . [(1]), .l", dZ'+ Iv (1ik dZ'. (5)

Stress oj':::ero order. Stress (1" is ofzern divergence (according to y), and therefore when
applying eqn (5) to the cell 0 (Fig. 3). we get.

\(1:; >= 101 I I' (1): ·l"k . ni dol'
• ' fl

(6)

Considering the periodicity of (1". only the integrals on the boundaries S+k and S_k (where
normaln = ± e,j are not equal to zero. the other ones equating to zero two by two:

.' .yrS·k

~Q-------"':II

S+k

FIg I PerIod Q and surfaces SH'
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<aiD = Inl I I' a;~.)', '<),Ads-Inl I r. (J,I~·Yk.6jkds
".\ '. .," I.
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h being the period length in e, direction. we have Inl = I, .S. ,. Using the periodicity of 0'0

we finally get:

"

<ai'll = I;, .Inl I 1 a~!. ds = IS, I, I I J'
.\

a~ ds.

Thus, the volume average <a~~) is actually the surface average of elementary forces
directed according to ei acting on the face having e, as normal.

This result can be generalized to stresses applied to any oriented surface
ISI'm = A /\ B, where vectors A and B are linear combinations-with integer coefficients­
of the vectors defining the elementary cell. Let us prove that the vector T obtained by
surface averaging of elementary forces acting on S:

,

T(m)=IS 'laOmdS isequalto <all).m.
,\

In this aim. we consider the cell n' (Fig. 4). defined by (A, B, ml'), the distance l' between
the two the faces of normal ±m being such that: I' = In'I;S = Ij(e( m) (no summation over
j). When applying eqn (5) to n' and taking the scalar product by m, one obtains:

.~ .""

I all.mdl" = I (a".n)(y.m)ds.
,11 ,dl

From the definition of n', all is also n' periodic (see Fig. 4), and we have:

"

In' I I I all ds = Inl I I all ds = <all)
,,~2 "u

hence

(a1').m=ln'l I I (ailn)(y.m)ds.
• ,'n

As previously stated. due to the periodicity, only the terms associated with the surfaces

1-+
ej-

-+----+-~...---j-'ej-periodicity ---j"'::---

.......... _-----~-----

Fig. 4. Volume Q' and surface S (representation In the two-dimensional case).
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having ::t III as normaL stay present in the boundary integral. Since the distance between
these faces is r we get:

<a").m=11 I .1.'1'1) I a".mds=T(m).
.'

ThIS equality is valid for any discrete orientations m (such that m = A 1\ B). As at the
macroscopic level an elementary surface includes numerous cells, one can always assimilate
the macroscopic orientation to one of the discrete orientations. Therefore
(a'') = C" .. eJ Uo) actually defines a macroscopic Cauchy stress tensor. In the same way all
the terms C' .. e \(L'f) are also Ca uchy stress tensors. We note that local stresses are sym­
metric and therefore these macroscopic tensors are also symmetric.

Stresses at higher orders. On the contrary to aO, the stresses at order p (p > 0) satisfy
an equation of the form:

V, .[0'/] = .\1'.

where II IS a periodic term different from zero. having a zero mean value in y. Following
the same reasoning as above. we have

(al'). m = lS' I I 0'''. mdl+ In'l Jr. sl'(y. m) d1'.
. \ JI1

Equation (7) leads us to make two remarks concerning the surface average of al':

(a) Force vector Ti' (m) by unit -;urface acting on face S.

'F(m) = 'SI I a". mds
.'

is 1101 a macrolcopic quantitr. As a matter of fact. we have

P(m) = <a/')m -In'l I I~ sl'(y. m) d1'
.11

(7)

and as .I" .(y. m) is nol a periodic term. the value of TI'(m) depends on the choice of the
period used for the calculation (i.e. on the variable y). That means that the surface average
of al' varies at the microscopic scale

(b) Moreover the surface a1'erage of elementary forces due to al' do not define a tensor:
in the frame associated with the normals of the faces Sic. we consider the components Lik

(no symmetry) defined from the surface averaging of the ith component of the force due to
a" acting on face S, :

~

I j I'd
.

aik s.
\'Ie

These components define a tensor L Now, from eqn (7) applied to nil, and n, it is easy
to see that the components of T"(m) are given by :

hence
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This inequality proves that the operator connecting m to T'!(m) is not linear, and
consequently. the slir/ace a!'craqc oj slresscs 0-1' doc.\ 1101 dcfillc a tensor. On the contrary,
volume averages do define a tensor. But these can not be interpreted in terms of common
Cauchy stress. We will see in the next section v. hat is the meaning of the macroscopic
equations which involve «(11') tensors.

3. A~ALYSIS 01 IHF D/SlKII'TIO'\ 1'\('[\1)1,\(; /lKiHER ORDER TERMS

Gambin and Kroner (19X9) considered the influence of the higher order terms in terms
of macroscopic "behavior" law. It was shown that the relation which links the averaged
stresses and strains include weak non-local effects associated with the successive gradients
of the strain tensor. However. slriclo sensll. this relation is not a behavior law, since averaged
stresses «(11') (p > 0) are not Cauchy stresses.

Here. taking into account this difficulty of interpretation. we study the role of the
higher order terms from macroscopic balance eLjuatlons.

3.1. inlcrprctalioll of halallce C(llialiom

3.1.1. Macroscopic c!mloslalics. The balance eLjuation (4a) at zero order, corresponds
exactly to the common elastostatic formulation. Field e" which results from the distribution
(p >rn. is what would appear in a continuum elastic medium characterized by elastic tensor
CO However. this description is only \'alid to an accuracy of I:.

3.1.2. Forcc dislrihlliiolls duc 10 miCrosll'llclllrc. Let us now examine eqns. (4b, c) of
order I and 2. As tensor «(11'\ (p > 0) is not a stress tensor. these equations cannot be
interpreted directly in this form. Considering that the terms ("' .. e,( U") in «(1") are actually
stress tensors. we can give a phy sical meaning if we rewrite eqn (4 j in the following forms:

fl.)

V, [C II . e, (Ie I )J = - \' [C . V.e, (l" I)

V, [e" . e, (;'[ )J .,- \: [C Ve,(il lj Y, [C". .. Y,V,eJUOj].

(8a)

(8b)

(8c)

Equations (8b. c) are elastostatic equations applied to fields ;:U ' and E
2ue. respectively,

where source terms resulting from displacements fields at lower orders appear. These terms
are similar to diffracted sources in the dynamic case (Boutin and Auriault, (1993». These
force distributions arise from the fact that the equations which express the momentum
balance of the cell at order e' do not take into account contributions of order ei + I. SO, these
latter become forcing terms in the balance equation at order I:,e I. Consequently, in order
to balance these sources. a displacement field ['" i occurs. satisfying the elastostatic equa­
tions of the homogcncous clfui!'alenl medium,

Unlike what would happen in a perfect homogeneous material (for which C' = 0). the
presence of a microstructure results in a distribution of forces which generates a series of
displacement fields of a 100\l~r and 100ver amplitude: fields of order strictly inferior to i
generate sources at order i which themselves generates a field of order i, and so on,

The source terms are connected with the sllccessive gradients of the strain tensor, and
therefore. they introduce a non-local effect in the material behavior. It is clear that the more
the deformation comes to being homogeneous. the weaker the sources will be. Conversely,
when strain gradients are signiticant. the correctIve terms become significant, so they
amplify the non-local ctleCh and modify the solutlun l'li of the equivalent homogeneous
medium.

The sharper the heterogeneIties arc at the mIcrOSCOpiC scale then the larger are the
values of C and C' and the mure the non-local terms become significant (for the same
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inhomogeneity level of the macroscopic deformation). Finally, note that if the material
presents an isotropic macroscopic behavior (up to the second order), then C' = 0 and the
first significant source term appears at the order ,,2. Consequently the non-local effects
would generally be more important in anisotropic materials than in isotropic materials.

3.2. Solring houndary condition prohlem,
For a material of known microstructure, tensors Co, C', en can be calculated. But limit

conditions to be applied to the LI'(x) fields should be known in order to determine the
macroscopic solution, up to third-order. for given boundary condition problem.

3.2.1. Macroscopic solution (Ilithout edgl! effects). On the macroscopic scale, let us
consider a body B----the boundary of which being oB-submitted to the macroscopic force
density <p )(x) and to the following conditions on the border:

• on the portion oB, of oB, imposed stress vector Six) ;
• on the portion oBD = oB ~ 8BI, imposed displacement vector D(x).
At zero order, the field [f)(x) is determined by the elastostatic eqn (8a) and the following
boundary conditions:

C' .. e,(Llo(.y)).:V = Sly) onl'BI(havingNasnormal)

Llo(x) = D(y) (9a)

The calculation of the field I: L' I (y) is performed by solving another elastostatic problem
governed by eqn (8b) where the microstructural forces are directly deduced from the
knowledge of LlII(x). The boundary conditions applied to "Vi (x) must be such that the
glohal field un (x) +rV I (x) meets macroscopic conditions imposed on oB, i.e.

C' .. e, IL"(\)+IL 1 Ix)) ..V = S(x) on cBs

LI"(x) +1;[ 1\)==D(y) oncBD.

Taking into account equation ('Jet). ;;['1 (x) follows a Neumann condition on cBs, and
a Dirichlet condition on ('BI) :

e" .. ey[ IX)!. Iv' = 0 on cBs

1[· (y) = 0 (9b)

In the same way, the macroscopic field "c UC(x) is totally determined by the elastostatic
equation (8c). where the microstructural forces are calculated from the fields VO(x) and
"U I (x) already obtained and boundary conditions of zero stresses and displacements,
respectively, on ("Bs and (lBD [i.e. conditions (9b) where eCV 2(x) substitutes cV1(x)].

By this reasoning at the macroscopic scale, we obtain the macroscopic displacement,
which appears within body B, up to third-order. However, this solution does not take into
account the edge effects existing on a thin layer in the proximity of aBo

3.2.2. Remarks on edge etleets. It is known that real boundary conditions are only
satisfied on average (on a period) by the homogenized description (see for example Sanchez­
Palencia, 1985). For this reaSon, boundary layers have to be introduced in order to match
real and homogenized conditions. The analysis of these layers, up to third-order, requires
specific developments and will not be addressed in this paper. However, the following
remarks can be made:

(a) Matching boundary conditIons up to third-order requires the introduction of
boundary layers at each order.
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(b) For homogenized problems at zero order, the boundary layer concerns the stresses
on aBs. It generates corrective displacement of the first order which is defined up to a
macroscopic term. This latter will be determined by a continuity condition between the
displacements given, on one side by the solution on aBs of the macroscopic problem at first
order, and, on the other side, by the inner limit of the corrective term.

(c) For homogenized problems at higher orders. other boundary layers will expand
near aBs for matching stresses conditions. Moreover, as the displacement fields vary on the
local scale (contrary to uo), another type of boundary layer has to be developed on aBD to
match the homogenized and the real imposed displacements (it is clear that for these new
boundary layers there is no displacement indetermination).

As a conclusion, let us note that the boundary layers describing edge effects modify
the fields at the very vicinity of the boundaries, since the limit layers have a "thickness" of
about one period, Dumontet (1986). Therefore the macroscopic solution obtained by the
procedure given in Section 3.1.3 will be valid for the body B, except for these limit zones.

3.3. The measurement 0/ E to quantif)' non local effects
Until now, we spoke about the macroscopic size Land E = 1/L without giving an

accurate definition. But this is a key point in assessing the role of the microstructure in the
overall material response. We propose here two approximated methods aimed at assessing
Land E.

3.3.1. Rough emluation OlD. The more simple approach, Boutin and Auriault (1991),
consists of observing that the homogenization process leads to displacement fields of the
type:

[,"(,)+1:1,1(,.)')+ ... with u l = O(Uo).

If we consider the increase of uli in the direction x lover a given period, we necessarily
must have:

At a macroscopic scale, / is very small and we can write:

which gives a lower boundary of E. But, as E is the measurement of the macroscopic
description accuracy. the optimum value corresponds to the smallest allowable value, that
IS:

This latter expression of L is what would be obtained by the dimensional analysis of
the phenomena at the macroscopic scale. In the general case for a three-dimensional field,
we get:

(10)

and:

(II)

An order of magnitude of I; is thus locally given by the relative variation of the
displacement on the cell.
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For a given boundary condition problem. we can solve the elastostatic equations, and
calculate the field U li

. Then, using eqns (10) and (II). we. respectively. obtain the order of
magnitude of the macroscopic size L and of I; in any point of the material.

3.3.2. Accurulc assessmenl 0(;. The second method used to assess;: is more precise but
needs two integrations. From field [" previously calculated and the knowledge of C (or
C' if C = 0). we can determine by a second integration the field d I Lv) (or ;:cUC(x)). By
comparison with UO we deduce a theoretical local assessment of;::

(12)

3.3.3. A kinematic criTerion liJI' 1/(111 /0((11 e/lecl.l. Assessed values (II ). (12) of;; could
be used as a criterion oj occurrcnce of microstructural effects (except on borders). For a
given boundary problem. the dra\\ing of ismalues could allow defining ditTerent zones for
the response of the matenal :

(a) at very low values of ,; ( ~ 10 ). the macroscopic behavior corresponds to that of
the equivalent homogeneous material.

(b) the areas with large gradients. where ;; ~ 0.1. corresponds to the domains where
the role of the microstructure is sigl1lficant and for which it is lleCl:ssary to introduce
corrective fields ;:[."1 (or I;cU:):

(e) ifregions with;; > I an: obsened. the homogenization approach IS no longer valid.
and in thiS domain. the physics of the phenomenon have to be treated at the microscopic
scale .

.\.4. \"on/O((//lenlJ.I)or diflerenT/ol/diny.1
These results have been obtained assuming that the medium was submitted to volume

forces of type p(Ylr(x). i.e. forces which vary at local scale. The developed formalism can
also be applied to problems where volume forces are different-for example zero--~on the
cell. However. the equilibrium of the period is modified by this new force distribution. and
consequently. the expressions of tensors C and C" are diflerenl. even though Cil remains
the same (see Appendix A).

Thus. it appears that if the zC]"o order description can be considcred very clearly as
one of a continuous homogeneous medium. it is not the case for the macroscopic descrip­
tions which include the higher order terms. As a matter of fact. the effective tensors are not
strictly material tensors since they depend on the volume forces applied to the medium.
Moreover. the sTrucTure of the equations depends on the kind of load. as it can be seen
when comparing static and dynamIC descriptions (see Boutin and Auriault. 19(3).

However. It should be noted thaI. for a yiren distribution of volume forces. the tensors
remain the same whatever the boundary conditions. since these lalter do not change the
cell equIlibnum. From this point Of \Ie\\, the effective tensors can be considered as quasi­
materia I tensors,

3.5. COIII{Jarisol/ \I'lrh OTher lI1iero.lll"llelura/ approache\
In this section. an attempt was made to compare the homogenization approach with

two other theories. which deviate from the usual frame of continuum mechanics. by
introducing a characteristic length of the microstructure. In order to study the localization
phenomena. the double gradient theory was used. for example. by Lasry and Belytschko
(19S8). De Borst and Mulhaus i lY911. and thc ('osserat mechanics theory by Besdo (1985)
and MLilhaus and Vardoulakis (19Xh)

.\.51. ('olll{Jarisol/ lliTh rhe \('e(lnd .ljI'odiel/l opproach. Through the addition of the
balance equations at the three first-orders. we can obtain a single equation. valid up to an
accuracy of 1:'. which includes the global macroscopic displacement held.
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V,. [C' .er[ )] + fI = -V .. [CVe,r[)J- V [C" ... V,V,eAU)].

In the more general case. where C' * O. we gl'l the following equation to [;", when
considering onl) the first correctj\(? IeI'm.

V .le" .e(CI]+ \ lC .Vein]. (13)

:\ote that In eqn (13). t\\O operators are applIed to [, one of them elliptic of the
second order. the other one hyperbolic of the third order. This pomt seems to pose a problem
of solution stability. Actually this difficulty is artificially introduced when regrouping into
one equation the two equations at zero and first orders. If we respect the non-coupling of
the orders given by homogenization. it is clear that eal'h field [' is determined by the elliptic
operator of elasticity without any problem of stabilit\

For the cases where C = O. whIch correspond fllr example to a macroscopic isotropic
material. we get the followmg equation to ,:'

\; lC ,V v'e,([)j. (14)

This constituti\C Lm eqn (14) IS similar tll that pmposed in the second gradient
approach. and kads us 10 make the following commenh.

(a) On the basis of the homogenization approach assumptIons. the existence of non­
local terms linked to the successive gradients of the strain tensor. without any postulate,
has been rigorously established. In contrast to the usual one-dimensional analysis, we
present a tensorial description dealing with three-dimensional problems. An advantage of
this method is that it shows that the first significant non-local term is generally not associated
with the second gradient. hut to the sinyle .c;l'wlielll. which introduces an anisolropic effect
[eqn (1:1)], This fact is not highlighted by one-dimellSlonal analysis. The non-local terms
only need the second gradient of the strain tenwr Icqn (14)]. in particular cases, as for
example macroscopic Isotropy (UP to second orden (lJ" stralIlied composites (see Section
4). They may be isotropic or anisotropic according to the naturc of tensor C'.

(b) Moreover. these results enable a good understanding of the physics of the cor­
recti\C terms originating from the mlcrostructurl' It IS interesting to note that non-local
effects do not result from a correction of macro~cl)pic str~lin telhor hy its second gradient.
as proposed b) Lasry and Belytschko (1988). In the same \\ay, non-local phenomena cause
a distribution of volumc forces. and not a modilie,ltion of the stress -strain relation (since
for fI > 0, tensors (1" arc not stress tcnsors and the ~urface a\erage of (11' does not define
a tensor).

(c) Another ad vantage 01' honwgenizatlon Is the' clea r definition of its validity domain:
the obtained description like that obtained from the second gradient method-is correct
only if there remains a clear scale separation. Thu~. any phenomenon for which the physics
at the local scale is determinant. cannot he described by this kind of approach, From a
numerical point of view. the results of the homnge11lzatlnn process present the interest
of uncoupled equations at the different order~ nf magnitude. Thus, when C' = O. the
determination of the global displacement field requires <In integration of two differential
second order problems. while the second gradienl approa,-ll necessitates the resolution ofa
much more complex ditferential fourth order problem

35.2. COII/puri\o!l II IIIi ((I\SCI"lI! II/cdiu Herl' the question becomes: do the higher
terms change the clastIC macroscopic behavior. intn cl behavior of a Cosserat medium? Let
us recall that for those media, the stress state i, described b\ a non-symmetric Cauchy
IClisor and the partIculate kinetics include both translations and rotations.

ffiqllCr Icrll/\ und COS\cl"({llI/cdill. The honwgenilCltion dcvelopment shows that higher
order expreSSllHlS introduce corrective translatIon terms into the kinematic of the cell.
without am rnl~ltlon !\1oren\er. the pl1\sical m~lcrnslopie stresses. i.e. in the form
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CO .. eJ U), are necessarily symmetric. Finally, the source terms are force densities, which
do not introduce micropolar couples. Consequently, even when taking into account higher
order terms, under homogeni:::able conditions, the macroscopic behavior of the elastic per­
iodic composites can not be identified with the behavior of a Cosserat medium.

It is clear that this conclusion comes from the essential assumption of local invariance
of the variables, which is expressed in our case by periodicity. As a matter of fact, this
hypothesis does not allow rigid rotation of the cell, and implies the symmetry of the
macroscopic tensor stress (see Section 2.2.5).

Surface al'erage of non-inmr;ant stresses. At this point another question arises: could
we find a Cosserat media by dropping the hypothesis of periodicity of the variables, i.e. in
non-homogenizable situations')

Using the same notations. eqn (6) can be written in the more compact form:

J(J. rn dl I ((J' n)(y . rn) ds.
",'t I

(15)

Let's apply this relation to the cell Q. where rn is equal to ei and el , respectively:

L(J . e, dl' = J((J . n)(y .e,)lh =" f((J .e;lds+f ((J. n)( y . eJ ds
oil S±k k 1o'

L(J
"

e)ds = I, I((J.e,)ds+fe,dl' = J((J. n)(y ((J.n)(y.eJds.
.n ,) II S±k k #)

By dividing by IQI, taking the scalar product by ei and e i , respectively. subtracting the
two equations. and finally using the symmetry of (J. we obtain:

[15,1 I J,,((J.e,ldl].c,-[IS;1 I L((Je;,ds].c,

J", /. '"' ((J,d(Y· e) ds- fHk ((Jjd(y· eJ ds.

We notice that when the periodicity is not assumed the surface integrals do not vanish,
and therefore the surface averaged stresses are not symmetric.

However, a global description corresponding to Cosserat media will be obtained when
the condition that. the state of "global stress" is actually a tensorial state of stress is obeyed.
Consequently we have to examine if the surface average of local non-periodic stresses define
a Cauchy tensor. In this aim. we follow the same reasoning as in Section 2.2.5. Applying
relation eqn (15) to the volumes Q and QO, respectively, we get:

J
' (J. rn dl'
n I

, ((J.n)(y.rn)ds=l, r ((J.rn)ds+f ((J.n)(y.rn)ds
to'd2 .J .)j., S±J ii'/.:

I (J.rndl' = r ((J.n)(}.rnlds=rl'((J·rn)ds+ 1 ((J.n)(y.rn)ds.
",,12 ",In "'.) Jr±

Then. the surface average of stresses acting on the face 5, T(rn) = lSI-ISs ((J. m) ds, is
related to the surface average of stresses acting on a faces Sk by:
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T(m)-nhIS,1 'i'(O"·edds=IQ'1 'I O".mdc-IQI
." • n

I 0". m de
..,0

-10' IJ~ .. (O".n)(y.mjd.I-t-IOI IJ~ (O".n)(y.m)ds.
I ~ .)+1 I""

In case of periodicity, the two volume integrals were equal and each surface integral
equals zero. Now. when relaxing the assumption of periodicity, these equalities are no
longer true (when m is different from the vectors ed. Consequently:

T-m,ISkl I" (0" ci)d.l#O
• Sk

It results that the surface average of stresses in a direction m cannot be deduced from
the knowledge of the surface average of stresses acting on the faces defined by the reference
frame (as it would be for Cauchy stresses). Thus. when stresses are not periodic-more
generally, do not present a local invariance---it is not possible to define a tensorial state of
global stress. and therefore the overall behavior does not correspond to the one of a
Cosserat medium.

In conclusion, when studying elastic composites. one is confronted with the following
alternatives:

(a) Either, the situation is homogenizable and then a macroscopic tensorial symmetric
state of stresses exist. The microstructural effects are described by a microstructural forces
which implies non-local effects.

(b) Alternatively, the sttuation is not homogenizable. Then the surface average of
stresses are not svmmctric, but these surface averages of stresses do not define a Cauchy
stress state. As this point is in contradiction with a basic assumption of Cosserat mechanics,
it results that the medium can not be described by Cosserat mechanics. Moreover. the use
of "non-Cauchy global stresses" has to be done very carefully for the following reasons:

• Since "global stresses" are not tensorial. there IS no tensorial "global stress"-strain
relationship. For example if a "global stress" strain relationship is established in a
given frame. the usual tensorial rules are not applicable to deduce the relationship
for any other frame. More generally this result poses the question of the definition,
and even the existence, of a constitutive law (linking strains with ... ?) .

• The use of non-tensorial "global stresses" do not allow to express boundary con­
ditions on a surface of various orientations. In this case (i.e. when the boundaries
of the medium are not plane) the only possibility is to express the conditions at the
microscopic level.

Discussiol1. Since these results are not in agreement WIth the approaches developed for
stratified elastic half plane by Miilhaus and Vardoulakis ( 1986) or Papamichos et al. (1990)
let us examine more precisely their work.

In these articles the "stress-state" in a stratified medium is described by surface
averaged stresses. The equations governing these non symmetric "global stresses" are
deduced and correspond to the moment balance of a Cosserat continuum, provided that
adequate calibrated coellicients are introduced. For this reason, the authors formally
identify stratified media to Cosserat media.

However. this is not sufficient to justify the application of this theory: it must also be
verified that the others assumptions are fulfilled. This is not the case here since, when
"global stresses" are not symmetric, they do not define a tensor. To our knowledge, this
essential problem was never addressed.

Nevertheless, the consequence of non-tensonality of "stresses" only appears when
considering inclined surfaces in the reference frame. Thus. as the treated problems only
involve plane boundary conditions. this difficulty disappears and the solution obtained by



!040 ( 8"1I1111

this approach. tor filii killd 0/ /)WhlclII. IS corrcct. and therefore the Mlilhaus approach
becomes relevant (independenth of the inappropriate use of the term "Cosserat medium"
for the stratified material). Thus. the case of stratified half plane is a very interesting since
lIoll-hO/}/ogflli::ahlelilumiolls CUll hc lI/11dc!i::ed by using "non-Cauchy global stresses". This
feature. which is due to the "one-dimensional aspect" of both medium and boundaries. is
specific to this problem and the obtained results cannot easily be generalized neither for
other medium. nor for other boundar:- condillons.

3.5.3. App/iCiiliolllo Ihelli/(/\ ot Ihe occurrellce of the /o('u!i::alioll. At present. numerous
experimental studies for example Scarpelli and Wood (1982). Desrues (\984) and Boulon
(1988 )--address the emergence of shear bands in heterogeneous materials such as soils.
rocks. and concrete. It is now well established and admitted that this loss of homogeneity
in the macroscopic deforma tion of the sample -or the studied structure -is linked with the
presence of a microstructure in the material. In other terms. when the localization happens,
the microstructure is involved in the response of the material. Thus. the mechanics of
continuum media is not the most adapt theory to describe this kind of phenomena. More­
over. while a shear band occurs. experimental observations show that the deformation is
localized in a domain having a thickness of about 10--20 grains or heterogeneities (i.e. L
roughly equals 20 :x I so i: :::: 5 >< ] 0 .). and more generally the localization expands into the
high gradient zones.

Finally. the use of microphologrammetry for rocks and concretes has clearly shown
that the strain inhomogeneity can happen even when the behavior of the material can still
be considered as elastic (at least I1ldcroseopieall:-).

From a theoretical point of view. localization phenomena. are usually considered as
the expression of a mechanic instabilit:-. linked with non-linear behavior. and resulting in
bifurcations in the solution (Hill. 1lJ6~. Mandel. 1966: and Rice. 1977). These theories,
developed in continuum mechanics. lead to a shear band of zero thickness. which is not in
agreement with observations made In order to have a better description of the experimental
reality, the use of constitutive law~ of Cos~erat. non-local or double gradient types, which
introduce microstructural efl'eets. have been proposed since the beginning of the 1980s,
particularly in the papers mentioned in the two preceding sections. The results published
show that the instability anah ~l\ dnd the microstructural approach complement one
another.

In order to illustrate the inlcrc,t l11' our results. let us consider a rock which can be
considered as an elastic composite A sample of this rock is submitted to a test which
is deliberately non-homogeneous (for example. the Brazilian test) or it becomes non­
homogeneous because of uncontrolled effects (binding. eccentricity. surface unevenness,
etc.). In areas where the deformation remains quasi-homogeneous. the material will respond
as the equivalent homogeneous continuum. Therefore. the effects of the microstructure,
needed for the emergence of localwltitJl1. will not appear. But, in the domains where the
deformation is clearly non-homngcneuus. these microstructural effects will develop. This
reasoning leads us to believe that the Incalization can only appear in these areas. which can
be identified using the kinematic entennn obtained from the assessment of E.

However. this approach is 111l11led to the characterization of the POlflltia/ regions for
the emergence of localization within the bodv As a matter of fact. inside a well developed
shear band. there IS no more sc;tlc scparallun and the IJOl/1ogeni::atioll approach breaks

doH'lI. These conditions \\ here L :::: I allO\\ new local kinematics. dilferent from those
corresponding to [, »/. Particularl:-. rotations. slips. etc. of the grains can be observed.
The physics governing these phenomcna is often different from the one determined by
homogeneous tests: the role uf grain angularity. granulometry. shape, etc. then becomes
essential. Consequently. we observc non-homogenizable phenomena resultll1g from micro­
scopic effects.

Let us remark that the secClnd gradient approach is also limited by the same reasons,
but they are not explicitly e.\pres~ed. FInally. the fact that the di/Terential Cosserat equations
present a positive definite principal part do not insure the relevance of the model for
describing the physical phenollll'nd
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h~ [kSCnplll)J1 Ill' the studied strdlIfied composite

.+ I [II 1.\\\lI'LF OF SIRATIFIU) COMPOSITES

The preceding result-; have been applied to the periodic stratified composites (Fig. 5)
which have already been ,ludied 111 a number of papers. for example Biot (1965), Auriault
and Bonnet (19K5) and P~tpamtchos(,lill. (19901.

This kind of microstructure presents the advantage of simplicity, which allows an
analytical e\pr~',sion of tL'IN)rS the ('" and C" But. we will see that its one-dimensional
structure exhibit-. ,ome specitic prt1perties.

The determination or tensor C in periodic stratIfied composites is interesting for two
rea,ons First. it gives an exact e\pression which can be used in second gradient theories,
second. the knO\\lcdge ofC' allo\\, one to solve problems with any kind ofhomogenizable
boundary Cl1l1dttions \\ hk'h cannol be treated by "non-Cauchy stresses". As an example.
thc determination or the 1ll1en),trudural effects in the presence of any cavity-provided
that its size is large in L'ompanson with the stratiheation thickness---can be addressed.
This kind or anahsts IS IIllP0rl,l11t and relevant in composite engineering (fragilization of
structures h\ Iwlcsl. L·t\ tI L'nginL'ering (tunnels in stratitled rt1cks). etc.

We assumc thaI the peri(ld (Fig. 5) is constituted of two isotropic elastic layers iI and
h. with respect i\e thiL'kne,ses (I r 1.1i and -:.Ii. As \\ e use microscopic variables to solve
elementary problem,. 111 thl"; syslelll ofvariablc. the period size is Ii", = /:']h. Let i.", Pu. i·h•

/1;,. equal th(' Lame cnnslants I'!' the layers 1I and /J We will note;' (p .... ) the function
having the \ alue I,. (II.. 1111 I.lver a and ii, (lie.. ) In layer h.

Owing to th(' nnL"dilllL'nSll)nal geometry. the fields depend locally only on variable YI
(which we lIill note 'llllpiv as I). Thus. the ditlcrentlal operators L ", L -I. LO take the
following ('\PITSSlllll,:

('I (i .- ~-!I) . ,
,

(/I ) )( ,
I

(II) = ('[II . ,'( II. ) I ] (

('[II. ('(//: ) ( ) ,

"[I :,'(11) ('V -;-,'(11, ('\,.-] ('(II;) II,; t2P.?(UI):CXI]lc',

('Ill:) (',j<'x:+t[P.D(U2)/C,]/(!X,

( /I ) (-.] h I -to (' [Ii C(U I )1a1 ] 1(0 X "

III ) t, ]tv I + ?[fU!(UI )/(\]/('X,

I." i, tilL' CO!11!11on h\)trnllil el,ht\hLltll operator ('\pres:,ed a('cording to the x variables.

4.1. j)Wl!c Il'iI\(i1' C
Denoting hy F lhe l'll!11pl1nents of the macro,eopic strain tensor eA U'). the problem

I. :(/1'.)-'1. (l'l (11,\\rittL'nin thefonn.
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?[(/. + 211) . ('(u l )!?r + (i. + 2,u)E , I + i.E22 + 2E,,]/t3y = 0

('[11. O(U2)/('y+2I1Ed/oy = 0

C[I1. O(U3)/cy+2I1E\ ,]/ay = O.

We now define four vectorial solutions XII, X22
, X33

, X12
, X13

, (X23 = 0) associated with
Ell, £22, Ell, £12, £13' All the problems to be solved are of the type:

t[:x. ?(X) l'y + !3]/oy = 0

with X; (el' D(X)/('.l' + [J) continuous and hOI-periodic, andel, [J constant in each layer a and
b. The solution is as follows:

X{r) = /(.1'). :xD(1/:x).O([J)/O(el)

where, by convention, for each function If' taking the a constant value If'a in layer a and \fh

in layer b, we introduce the notations:

andf(r) being the function:

. I [1'17"" ~ (1 -,T),',',,'2]1(1- r)1(1') =
. - [\ 17", + r! 2], r

in layer a

in layer b.

Thus. we obtain for the only components different from zero :

X~2 = X:) = k. [O(i)/O(l + 211)].1 with

X~2 = xi) = 2m.f

k =(i,+211). D(1/(I. + 211))

m = (I!). D(1I/i).

Consequently. the stress fields c~~" associated with £kl are:

c:~ I I = (i..±21!) (I , IJ, II, O. 0, 0)

C:: 22
=(~-tl!!)«IJ>,·;.qJ.O.O,O)

(':;'\ =(i._-t~ll)(IJ)·ep·;.O,O.O)

c:; 12 = 2l:1(0, 0, o. O. O. 1)

c:~ I; = 2l:1(0, 0, 0, 0, 1.0)

= (1J>IJ+i.(I-IJ)/(~·+211)

We get the macroscopic elastic tensor by averaging these elementary stress fields. The
components which do not equal zero are the following:
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C~,21 = <:l.p\ C'/2 12 = eli, " = :l.p.
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(16)

Macroscopically, we obtain a cylindrical orthotropic elastic material. It is easy to verify
that the tensor given by the expression eqn (16) is valid for anyone-dimensional distribution
of the elastic coefficients i, and II which generalize the results of Auriault and Bonnet (1985),

4.2. Tensor C'
The tensor C l is determined from the elementary solutions of the following problem:

The solutions u~ depend on the gradient of strain tensor V',e,(U Il
) whose components

are noted Eii.k . Taking into account the cylindrical symmetry around axis I, axes 2 and 3
are equivalent, so that we can restrict the number of problems to be solved (other solutions
being obtained by index permutation). Thus we then treat:

c[(i,+2p)i"(UI):?, -t-(i.+:l.Il)(X: I. E'I I +X~2. t'21 )+iXi 2. EI2 .2];2\ = 0

C[,uC(U2)J, +p(X: . Ell' -t-.K~2. E222 )+i,X!2. E I, 1](".1'

= (i,+211)/«r/)--11)E I -+«¢)-¢)E22 , +( , -;')E"2}+2«II)-II)E2 .u ·

All the problems are of the following type:

with Y: (~ . c(Y)i", + fJX) continuous and hm-periodic and ~: fJ: Xconstant in each layer.
The solution is of the form:

Y = D(X)[<Fo:)-Fe<]+<JX/.1 ~)- JXfJ~

where:

I
'. . I.., y[r,h,,,,, - (1- r) 1 :l.(1 - r)

F( r) = I (u) du = I

" -.1'[.1' h",+r] 2,

in layer a

in layer b.

Thus, we get the components which do not equal zero of y;i,i, whose expressions are
given in Appendix B:

Y I I y221 = y:' y: -- = y: ;~

I I

y! I 2 = y; I 1 y~22 = Y ~.:;:~ n'2 = yV'

Yi' I y\ 11 y~" = yi"..~

The stress fields ('I resulting from the gradient of the macroscopic strain is deduced
(Appendix B). The only fields which do not equal zero are those associated with:

However, the calculations show that even though these stresses of order e do not equal
zero, they have a zero average on the cell. Thus, this one-dimensional microscopic geometry
presents the particularity of defining an anisotropic material. for which:



!044 C Boutin

C' = () thusC = O.

This is due to the fact that the strains of first order are constant in each constituent. In
the more general case where the microstructure has a two-dimensional or three-dimensional
geometry. this point is no longer true and C i= O.

4.3. Tensor C'
As C = O. tensor C" is determined from the elementary solutions of:

Taking into account the expre,sions of u:. c'. and the cylindrical symmetry, we now
solve the elementary problems:

r'[jU'(lIo)(' +jl(X I.E 1 +X

= (/+ 2/1) :(<'1) - 'll E I

F" ,) + iX ~ C • E 1c. d/i\
-+ II -,c/))Ec'c)+(<-;,)-~')Enc}+2«p)-p)E23.3·

These problems can be expressed 111 the form:

with Z: (J: (' (Z) (e + flY) contin Ul1U, and h""periodic and Ct: f3: Xconstant in each layer.
In order to determine C. it suffices to 'itate the expression of c(Z)!c,. as:

We can thus determine the streS'i fields c' associated with the second gradient of the
strain tensor. After averaging. we l1btain the components (which do not equal zero) of
tensor C" which are given in Appendix B. We note that this tensor is not isotropic. Moreover
it clearly appears that C" is homogeneous to Po.m c and involves the square of the size h of
the microstructure and the mechanicil properties of the constituents of the cell. Finally, it
should be noted that for a given concentration T. the more the contrast of Lame coefficient
is obvious. the more the values of C" are large. and. for a given mechanical contrast, C" is
even larger when the heterogeneity concentration is high (, ~ 0.5).

, CO,,<ClLJSION

The homogenization method developed at higher orders is useful when analyzing
microstructural effects. Indeed this approach highlights under which conditions an het­
erogeneous material behaves as a continuous or discontinuous media, from a qualitative
and quantitative point of view. In brief. we revert back to continuum mechanics only if the
period is an '"infinitesimal" volume. relative to the studied phenomena. Conversely, the less
negligible the period size is--in comparison with the phenomena (i.e. more inhomogeneous
the macroscopic deformation is), the more important the microstructural effects are.

From the detailed analysis of the macroscopic variables at higher orders, we prove
that. even in the simple case of elastic composites, the microstructural effects do not
correspond to a modification of the strain tensor or the usual strain-stress relation, but
can be simulated by a chain of microstructural volume forces and displacement fields of
increasingly lower amplitude.

The source terms introduce non,!ocal effects since they involve the successive gradients
of deformation tensors. This point shows that the more inhomogeneous the macroscopic
deformation is. the more important the effects of the microstructure become. Moreover,
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new effective tcnsors C. C' . etc. which depend on the microstructure appear in the source
terms. Thus, we clearly show that thc role of the hetcrogeneities is not only of topological
nature, but includes also local mechanical properties. and we demonstrate that the incidence
of the microstructure is stronger for higher contrasts of elastic coefficients.

These effective tensors depend also on the macroscopic volume forces applied to the
material, so they are not material tensor. srriC((iICllsu, However they can be considered as
"quasi-material" since for a qi1"CIl distrihution uf macroscopic volume forces-which is
usually the case--these tensurs arc independent of huundary conditions. Finally, we have
to keep in mind that the macroscopic descriptlolb lI1cluding higher terms do not strictly
define behaviors.

The boundary conditions fur solving the 111\olvcd equations up to the third-order are
given. Thus, for a given prohlem in a given materldL wc can get a local assessment of I:

which can be used as a kinematic criterion for thc occurrence of microstructural effects
(without considering edge etfects)

The comparison between these results and (1thcr microstructural theories show that
the tensorial description obtained hy homogeni/ation is a generalization of the more usual
second gradient approach. Indeed. the tirst signiticanlmlcrostructural effects usually involve
anisotropic terms linked with the simple gradient of strain. and only for specific cases such
as macroscopic isotropy (or strati/ied composi tes) IS Ihe correction of a higher order. linked
with the second gradient of ~traln

Conversely. according to tim approach. It appc,l1'S th,tt the microstructural terms can
not be simulated by Cosserat mechanICS.

Numerical simulations and comparisons hct\\L'cn thosc three theories and the more
general non-local approach developed hy Eringen (I \)72) \\ill be performed later.

A concrete application of these theoretical results to the periodic stratified elastic
composites is presented. for which \\e shO\\ that ( ,= 0 and we also give the expression of
e".

These theoretical results can he used for the cxperimcntal study' of the occurrcncc of
the localization. We sa\\ that this phenomenon IS linked with the characteristic size of the
macroscopic strain. this sIze being associated with thc Inhomogeneity of the deformation.

However. the experiments are usually designed ll1 urder to have samples with the most
homogeneous macroscopic deformation possible. For thiS reason the formation of the
localization is due to parasite effects which arc not ea~ily controllable.

This difficulty could be reduced if -after behavior determination under homogeneous
conditions-tests with prescribed mhomogeneou;, macroscopic strain were performed. One
alternative consists of using the propagation of \\a\e~ having a length close to that of the
grain size. However. this measurement can only he qualitative, since the inertial effects
modify the description estahlished in the static ..:a~e In statics. this imposed inhomogeneity
could be governed by boundary conditions (loads ur displacements) applied to the sample.

Finally, let us recall that these results have been ohtained with small strains. for elastic
periodic microstruct ure, and can only he used if therc reillams two distinct scales. The case
of random materials is still an open issuc. Howe\n It has been shown by Auriault (1991)
that when a phenomenon is homogenizable. the I rl'l/I 1 1I/'(, of the equations remains the same
in both cases, This point is nut esta blished for higher urder terms, but the agreement of the
theoretical and experimental results f()r the R:l\ leIgh di/fraclion seems to confirm this
assumption.

When there is no more ~cak distinction. a~ l' thl,' lase III a well developed shear band.
the approach proposed here is no longer applicabk \1oreoveL these conditions where
L ~ /, allow local kinematics dilferent from those \\ hlch appear when L ='= / and the physics
governing these phenomena is different from that obt:lll1ed from homogeneous tests. Conse­
quently the observed response at the '"macroscopic" scale \\ill result from this non-homo­
genizahle physics at local seile.

jekl/(}\\!edqel1/cl1l I \\1,11 to 1h"n, 1'1'''1. "", \urt:ILtII 1,;S-I\1< 1 (rt,'lhlhk 11'''11,','1 for hi'Judicious remarks ,lI1d
cl1couraf!etnent during: thi~ \\(irk
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\PPENDIX A

ELASTOSTA TICS OF PERIODIC \lICROSTRCCTURES

In thiS appendiX we give the theoretlccil Je\t'!\)prnents which lead LIS to the macroscopic balance equations
lip to third order

A I I Re.\olulion 01 rhe proh!ems ill di/li:I'en[ 0/'("'1"

In order to simplify the expressions we will \\ nte c and /) lI1s1ead of C(1') and p(r).

Ordel' : The tirst problem one mllst tackle i, the foillming eqn (Ia):

\/ [, e(u"I] = 0

whose eXldent solutions are constant fields on the penod 1/' C'''I \').

Or"e> \t tIm order we have the svstL'm C4n (Ihl

which can be wTltten
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As a consequence of the IIneant\ of Ihe problem, the general solution becomes,

1/'11,1)==[ II)+\II! e,I[")

The third-rank tensor \ !s constructed from the particular solutIons XU such as

'V, [X] " [,'I I II () :X> = 0

('V, is the symmetri/ed gradlelll tens,lr! Ihe \'amltlonal fonnubtlon h the following'

1047

I ' II)

."
e (lI)dl = I [e,(111

~. ()

e I X 1+ , e, (1\)] dl = ()

Lsing index notations, we have more explicitly,

II' '+ X"e 11

The vectors X" bemg the ",IUtlOlls to the "stems

II ,X~> = ()

Order ,,"- With respect to tillS Imler the macroscopic balance equatIons are no longer obvious, We obtain
them by integrating over the cell the "'lnsldcred system (Ic)

L 1/1'1 = L ill'l f. 11"1

which is more convement III \Hlte In Its eqUivalent form

\' 11' + V (1" - 1'1 ',I I' ( \ I II

TakIng into account the stress perllldl"Il\, we ha\t'

Then, by putting the expressIon of 1/ into 11", we can deduce the macroscopic momentum equation at zero order
eqn (8a):

v [e' e(l "II c.

The set of equatIOns allowmg the determInation of /I IS

e"

V [, Ie (II I' e,lt, 1)1 [\ W(I,I+e,I["))]+I'(r)(''].

In this equation wc ,ubstltute /I h\ Its ,'xpresslon and 1>1 ',II' hy the macroscopic dynamics eqn (8a) obtained
above, We then get

V Ie le,l/lJ e 1\ t'li IIII-V, II e,l[ I] V [e' e,I['''j-[3C'' "e,(U")],

In order to simplit\ the nOla tlon, we Inlroduced li( .1), the ratio of the denSIty to the average density:

flUI = I'll') I'

We observe that the solution lr depends on two fon:lIlg terms,

• The first one IS associated with e,( ['),
• The second one is associated with Vel [. '} i,e, the yradil'lIl of Ihe strain tensor of the displacement U" at order

zero,

As a consequence of the Imearitv of the system, the field solution is a linear combination of particular
solutions associated with each of these fon:Ing terms, It IS Important to notice that the problems linked to the
displacement at first order are identIcal to those alreadv treated al zero order. Consequently we have:

V,e,ie")

The fourth-rank tensor' i, construckd frolll the particular SOIUIIOlb ,,,,,, and verifies'

[, (1) 11(I)C"j (Y) = O.

which corresponds to the vanallonal formulation
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l (:-1 t.' Ill) dl

0\ \\ hcn U .... lllg thl' lndlLl~tl IlULJtllHl

Ie I,' I

HUllt11l

I [C"il) (1(I)Clij. \I'di·.

."

x -+, e, 1\

/J( ., Y') = ()

(hd,'1

1 (J (J Ie III') +I' (II' )]:

III ''''dc'l IU h,l\e all eljlld\lUIl whcrc ,,"1\ ,lln,I!!C d"placel11cnts appear. we introduce the expressions of the
tickls thai h'l\c ,lIrl',"1\ hccil deterl11illed I hll' (IC !!l'l

(J !l' ,\

1<" .. l' I ( .. \el["l] ('=<C').

l' t,ll I l' III ) I II e,(11 )+e,(11 I].

\ Ie iii I C 1\ \ell )11-\ ,1\ l'(III-\ eil

l',l.I ))1 t e IX .e il 'I))] \7 .[e .. (e,(X .. \7,e,(U l l))+e,(U ' )]

Ie I I' . l' 1\ \' c II II I 1\ l' I ( II 1\ .1 II ) ~ \7, .Ie', \7,e,([' li l+ cO .. e,(U I)].

I c'l "' 11(\\\ 'llh,lrdLlI'rul11 th" CljUdli,'" ,hl' IllUIllCI1tl11l1 halallcc at the first order [eljl1 (Xhl] multiplied by fl:

\ Ie II, . l' 1\ 1\ l'll 11-\ I U

II (I('J .V,e,U")-\7 . [c"-f3CO] .. e,(U I
).

\\l' 1l,\II(l' Ihalille "JluIIOIl II dcpclllh ,'11 Ihree t'(\I'Cll1g lerms associated with:

{a I t hc ,I l'all1 tell" 'I' 01 t he a \ erage d "plaCCI11Cll t d I second-order,
(h 1 the grddll'nt 01 ,train tensor or thl' ,1\ erage llJsplacel11ent at first-order.
Il') 1. hI-' dl.'ublc gr~ld\l.:nt ()f straIn tl'11-;nr llr the displacemcnt ~It Icro-order.

Ihl' ti 1',' 1WI' (erllh lead to 'he prec'l'd Illg '1,1\ l'd pr()hlelll' al1d (mil tile latter. introduces a new problem to
hl' "lll\l'd l-kl..:dll .... l-' ,)1 lhc ]Jlll'ant:, th\.-' "P!UtIl111 h ;l-" 1'1.)110\\"

/11 \ II I I 1- X(II l' ,I \ I I I \ eU I )+Z{I·I ... \7 V,e,(lo).

Z" Ihe tilth I'dllh- \elhl'l cOl1structed trllill till' p,lrliulldr "JILltlons Z""'''. It venfics the cljuatJons:

( III +( \' ILl Z) = 0,

Or. \\Jlh ltidiL'L.ll 11Pt~lll()11

11

I' I, II I II (ill)("].
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( , Z:'''' = 0

I, ''''I IJC,:

Order/;'. At thIS order we are only IIlterested in the momentum balance. WhIch IS obtained as above:

V ['/Tij=() </T'

After replacing u' and u~ by their expression. we get eLJn IKci

v\ .[C" . elL)j ~ v IC V',e,(I ')J V I( v.\! e,(l ")] C' = (c'>

Nole. These results have been obtained III the case of a \olume f,lrce 1'(1)/"(\). The case of constant volume
force-and therefore no volume force can eastly be deduced by putting III all the developments f3 = I. Let us
mention that the formalism remains the same but the expressions of tensors C ' and C' would be different.

Relation helJreen tenson e' ond c". "rom the variational formulations we can hnk e ' and CO

Let us transform the term IIlcludlllg V. In the expression of the average value of:

( '( II (X + , v I YJ

In order to achieve this. we use the \anatlonal formulatlolh ;lsSIlL'lated with the fields X". They express that
any continuous periodic field II verities

e, ,") dl e IX 'jdl

When we chose II = VUn. taking Into 'h:count the symmetry ,'l, . we obtain

r [c'
",t1 .11

~ IV" "'I .~,IX")dr.

Now, using X" as test field in the \anatlOnal formulallon assocIated \\ Ith V"''''. we get:

- I c, I Y
• ll

So:

i.1 '( "X:e(X")]dr.

That is. when introducing 1''' .

.1,,1

I Iv
.ii

il" j . I 'X~.,.IXI+("'''X:,']dl., (]+."

I IV, ."Un')Xdl· I ':",X';!dl .
." .ll'

And. replacing the divergence by lIs expression. we estabhsh the Identit\

(. = C;:, ! (pX;," I" +- e" V, e:,' X

Note. In the case of constant \olume forces this relation hecolnes

C X;

which proves the antisymmetry of tensor C In regards "lth the' II.! I ;111[1 1/.:./1 Index.

;\PPF'\iOlX fl

CALCLLATION OF TF!\SORS C A "-10 C IN STRA IIFIED COMPOSITES

Notations
For any functioll lj/ taklllg the constant value lj/" In the laver" and Wi III the layer h:
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if; '=11 -- C)!/J,,+CI!I,

k = (; ±2jI)0(l (i. + 211))

, 1/1

C Boutin

O(!/J) = r( 1- T)h",(!/J" - !/Jb)

m = 1:10(1'11)

IPII + III 'iJ 1/.-2)1) qJ = ;'+ 2)1/(i,+ 2)1)

I II) IS the function defined h\

Fir) IS the functIOn FI I)

[\ 11",-- (I - r)2](l- r) in layer a
I I I) =

[111", + r'2]r in layer h

d\.h",-(I-r)]!2(l-r) inlayera
Illu)du =

-dl' h,,, + Tl/2r in layer h

Determination ole
The components of Y whICh do not ell ual lero are the following:

)':' =k.«r F!

y : " = 2m I ( F F I

We deduce the expressions of the stre" tields (different from zero) which result from the gradient of the
macroscopIC stram tensor:

I I ~ ,
( ~ 1

II +2)1)0(qJ)-!

--::;- (I

;\late that the components of the stre"es,' are of the type 1jJ' j and consequently:

C l' ~ () so e = 0,

Determination oj e
The expressions below give all the components of C" which do not equal zero, The non-explicitly written

terms are obtained etther by substituting index 2 by:1 if index 2 appears alone (for example C;, 1212 = C~J I Jl3)

-or by permutation of index 2 and :1 (for example e;: 'II, = C; 1 ''''). In order to simplify the writing we note:

C';, ,','I = 11 (;±:!.il)OCI ,m 6
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c~, : ,.:
= II 1/~~21I1Uliil D,I II ~,lIll D(i) D(j +211) +Olql) ,II: 12

c; ~ II I/~":2iIlDlliI: I), I \1 :':',u I) I)li) I)(j, + 2,11 + DI:I I' 12

c:; '-'" = II' III DUll (1

c; '~; II Dill lilDI!I) (,

c;, "" = II 1/.+

C 11 1 = II Ii +_2,1111)11/1
"

II/ -

C;," 1 = 11 II +2111DI!!11 fU I

C --,:;;:- Ii II + 21111)1, I 12I' III

C : ~ I = Ii 01,1/1 12
"

III
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